Metal-organic framework (MOF) glasses, known for their potential in gas separation, optics, and solid-state electrolytes, benefit from the processability of their (supercooled) liquid state. Traditionally, MOF glasses are produced by heating MOF crystals to their melting point and then cooling the liquid MOF to room temperature under an inert atmosphere. While effective, this melt-quenching technique requires high energy due to the high temperatures involved. It also limits the scope of new material development by restricting the compositional range to only those combinations of metal ions and linkers that are highly thermally stable. An alternative, mechanical milling at room temperature, has demonstrated its capability to transform MOF crystals into amorphous phases. However, the specific conditions under which these amorphous phases exhibit glass-like behavior remain uncharted. In this study, we explore the mechanochemical amorphization and vitrification of a variety of zeolitic imidazolate frameworks (ZIFs) with diverse linkers and different metal ions (Zn, Co and Cu) at room temperature. Our findings demonstrate that ZIFs capable of melting can be successfully converted into glasses through ball-milling. Remarkably, some non-meltable ZIFs can also be vitrified using the ball-milling technique, as highlighted by the preparation of the first Cu-based ZIF glass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202405307 | DOI Listing |
Sci Adv
January 2025
School of Materials Science & Chemical Engineering, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China.
Self-healing hydrogels can autonomously repair damage, enhancing their performance stability and broadening their applications as soft devices. Although the incorporation of dynamic interactions enhances self-healing capabilities, it simultaneously weakens the hydrogels' strength. External stimuli such as heating, while accelerating the healing process, may also lead to dehydration.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
Copper-based halides have attracted significant attention due to their unique photophysical properties and diverse coordination configurations. However, enhancing water stability and modulating structural transitions in cuprous halide materials remain challenging. In this work, we successfully synthesized three copper(I) halides, (CHP)CuBr (L1, [CHP] = hexyltriphenylphosphonium), (CHP)CuBr (L2), and (CHP)CuI (L3), via solvent volatilization, demonstrating exceptional water stability even after 27 days of submersion.
View Article and Find Full Text PDFSmall
January 2025
Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
N-type BiTeSe(BTS) is a state-of-the-art thermoelectric material owing to its excellent thermoelectric properties near room temperatures for commercial applications. However, its performance is restricted by its comparatively low figure of merit ZT. Here, it is shown that a 14% increase in power factor (PF) (at 300 K) can be reached through incorporation of inorganic GaAs nanoparticles due to enhanced thermopower originating from the energy-dependent carrier scattering.
View Article and Find Full Text PDFNanomicro Lett
January 2025
College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China.
The integration of dual-mesoporous structures, the construction of heterojunctions, and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors. Nonetheless, achieving an optimal design that simultaneously combines mesoporous structures, precise heterojunction modulation, and controlled oxygen vacancies through a one-step process remains challenging. This study proposes an innovative method for fabricating zinc stannate semiconductors featuring dual-mesoporous structures and tunable oxygen vacancies via a direct solution precursor plasma spray technique.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, Spain.
This article reports a theoretical study on the halogen exchange reactions YX + CHO → Y + XCHO (with Y = F, Cl, Br; X = Cl, Br, I) carried out at a high level of accuracy using coupled-cluster based methodologies including CCSD(T)-F12, CCSD(T)/CBS and CCSDT(Q). Most of the reactions are exothermic at room temperature, with the exception of the reactions FI + CHO → F + ICHO and ClI + CHO → Cl + ICHO. Exothermicity follows two concurrent trends established by the strength of the bonds being cleaved and formed: Y = F < Cl < Br (X-Y bond strength) and X = Cl > Br > I (C-X bond strength).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!