Constructing Thermal Convection Film for Low Heat Loss and High Salt Resistance in Wood-Based Solar Evaporators.

Small

College of Chemistry and Materials Engineering, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, National Engineering and Technology Research Center of Wood-based Resources Comprehensive Utilization, Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, P. R. China.

Published: October 2024

Unique suspension solar evaporator is one of the effective measures to address the major bottleneck of the emerging interfacial evaporators, i.e., the accumulation of salts on the surface. Yet, it remains a considerable challenge to avoid substantial heat loss underwater. Herein, a suspension wood-based evaporator is proposed with a thermal convection structure that effectively balances the contradiction between salt-resistance ability and heat loss. Benefitting from the heat centralization due to thermal convection, such suspension evaporator exhibits an excellent steam generation rate, which increases from 1.23 to 1.63 kg m h compared to the conventional suspension evaporator. Simultaneously, the steam generation rate retention improves from 64.9% over 20 test cycles to nearly 100% compared to the interfacial evaporator. This work provides an effective pathway for exploring efficient and stable suspension evaporators, offering essential directions for the future development and application of solar-driven evaporation technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202403141DOI Listing

Publication Analysis

Top Keywords

thermal convection
12
heat loss
12
suspension evaporator
8
steam generation
8
generation rate
8
suspension
5
evaporator
5
constructing thermal
4
convection film
4
film low
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!