A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrogen sulfide mitigates ox‑LDL‑induced NLRP3/caspase‑1/GSDMD dependent macrophage pyroptosis by S‑sulfhydrating caspase‑1. | LitMetric

Hydrogen sulfide mitigates ox‑LDL‑induced NLRP3/caspase‑1/GSDMD dependent macrophage pyroptosis by S‑sulfhydrating caspase‑1.

Mol Med Rep

Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang 832003, P.R. China.

Published: August 2024

Macrophage pyroptosis mediates vascular inflammation and atherosclerosis (AS). Hydrogen sulfide (H2S) exerts a protective role in preventing inflammation and AS. However, its molecular mechanisms of regulating the pyroptosis signaling pathway and inhibiting macrophage pyroptosis remain unexplored. The present study aimed to determine whether H2S mitigates macrophage pyroptosis by downregulating the pyroptosis signaling pathway and S‑sulfhydrating caspase‑1 under the stimulation of oxidized low‑density lipoprotein (ox‑LDL), a pro‑atherosclerotic factor. Macrophages derived from THP‑1 monocytes were pre‑treated using exogenous HS donors sodium hydrosulfide (NaHS) and D,L‑propargylglycine (PAG), a pharmacological inhibitor of endogenous HS‑producing enzymes, alone or in combination. Subsequently, cells were stimulated with ox‑LDL or the desulfhydration reagent dithiothreitol (DTT) in the presence or absence of NaHS and/or PAG. Following treatment, the levels of HS in THP‑1 derived macrophages were measured by a methylene blue colorimetric assay. The pyroptotic phenotype of THP‑1 cells was observed and evaluated by light microscopy, Hoechst 33342/propidium iodide fluorescent staining and lactate dehydrogenase (LDH) release assay. Caspase‑1 activity in THP‑1 cells was assayed by caspase‑1 activity assay kit. Immunofluorescence staining was used to assess the accumulation of active caspase‑1. Western blotting and ELISA were performed to determine the expression of pyroptosis‑specific markers (NLRP3, pro‑caspase‑1, caspase‑1, GSDMD and GSDMD‑N) in cells and the secretion of pyroptosis‑related cytokines [interleukin (IL)‑1β and IL‑18] in the cell‑free media, respectively. The S‑sulfhydration of pro‑caspase‑1 in cells was assessed using a biotin switch assay. ox‑LDL significantly induced macrophage pyroptosis by activating the pyroptosis signaling pathway. Inhibition of endogenous HS synthesis by PAG augmented the pro‑pyroptotic effects of ox‑LDL. Conversely, exogenous HS (NaHS) ameliorated ox‑LDL‑and ox‑LDL + PAG‑induced macrophage pyroptosis by suppressing the activation of the pyroptosis signaling pathway. Mechanistically, ox‑LDL and the DTT increased caspase‑1 activity and downstream events (IL‑1β and IL‑18 secretion) of the caspase‑1‑dependent pyroptosis pathway by reducing S‑sulfhydration of pro‑caspase‑1. Conversely, NaHS increased S‑sulfhydration of pro‑caspase‑1, reducing caspase‑1 activity and caspase‑1‑dependent macrophage pyroptosis. The present study demonstrated the molecular mechanism by which H2S ameliorates macrophage pyroptosis by suppressing the pyroptosis signaling pathway and S‑sulfhydration of pro‑caspase‑1, thereby suppressing the generation of active caspase-1 and activity of caspase-1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188054PMC
http://dx.doi.org/10.3892/mmr.2024.13259DOI Listing

Publication Analysis

Top Keywords

macrophage pyroptosis
32
pyroptosis signaling
20
signaling pathway
20
caspase‑1 activity
16
s‑sulfhydration pro‑caspase‑1
16
pyroptosis
14
hydrogen sulfide
8
macrophage
8
caspase‑1
8
s‑sulfhydrating caspase‑1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!