A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Statistical image reconstruction with beam-hardening compensation for X-ray CT by a calibration step (2DIterBH). | LitMetric

Background: The beam-hardening effect due to the polychromatic nature of the X-ray spectra results in two main artifacts in CT images: cupping in homogeneous areas and dark bands between dense parts in heterogeneous samples. Post-processing methods have been proposed in the literature to compensate for these artifacts, but these methods may introduce additional noise in low-dose acquisitions. Iterative methods are an alternative to compensate noise and beam-hardening artifacts simultaneously. However, they usually rely on the knowledge of the spectrum or the selection of empirical parameters.

Purpose: We propose an iterative reconstruction method with beam hardening compensation for small animal scanners that is robust against low-dose acquisitions and that does not require knowledge of the spectrum, overcoming the limitations of current beam-hardening correction algorithms.

Methods: The proposed method includes an empirical characterization of the beam-hardening function based on a simple phantom in a polychromatic statistical reconstruction method. Evaluation was carried out on simulated data with different noise levels and step angles and on limited-view rodent data acquired with the ARGUS/CT system.

Results: Results in small animal studies showed a proper correction of the beam-hardening artifacts in the whole sample, independently of the quantity of bone present on each slice. The proposed approach also reduced noise in the low-dose acquisitions and reduced streaks in the limited-view acquisitions.

Conclusions: Using an empirical model for the beam-hardening effect, obtained through calibration, in an iterative reconstruction method enables a robust correction of beam-hardening artifacts in low-dose small animal studies independently of the bone distribution.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17239DOI Listing

Publication Analysis

Top Keywords

low-dose acquisitions
12
beam-hardening artifacts
12
reconstruction method
12
small animal
12
beam-hardening
8
noise low-dose
8
knowledge spectrum
8
iterative reconstruction
8
animal studies
8
correction beam-hardening
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!