A partial substitution of wheat flour with potato flour processed by various procedures was used to determine an optimal potato pretreatment method for noodle processing. Wheat flour was substituted with 10%, 30%, and 50% potato flour. Potato flour (PF) was processed using two different methods, including freeze-drying (FD) and low-temperature blanching, then oven drying (LTB_OD). The results showed that substituting wheat flour with freeze-dried (FD) flour (44.29 μm) significantly decreased the mean particle size of the blended flour, while LTB_OD flour (223.09 μm) increased the mean particle size. The pasting properties of wheat flour significantly improved when potato flour was added, with FD flour blends having the highest results. The highest dough development time (14.46 min) was attained when LTB_OD potato flour was substituted up to 50%. The microstructure images showed a poor and discontinuous gluten framework when potato flour content reached 50%. Adding potato flour decreased noodles' brightness (*) while increasing their yellowness (*). Noodles made from wheat and LTB_OD flour blends resulted in the highest cooking loss. The texture properties of noodles deteriorated when potato flour content reached 30%. Substituting up to 30% with freeze-dried flour and 10% LTB_OD resulted in noodles with the highest overall liking scores. The study suggests that for optimal noodle processing, substituting wheat flour with FD potato flour is more favorable than using LTB_OD, as it improves particle size, pasting properties, and overall liking scores while minimizing adverse effects on texture and cooking loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167180PMC
http://dx.doi.org/10.1002/fsn3.4058DOI Listing

Publication Analysis

Top Keywords

potato flour
40
flour
21
wheat flour
20
flour potato
12
particle size
12
potato
10
flour processed
8
noodle processing
8
flour substituted
8
substituting wheat
8

Similar Publications

The regulation of midline crossing of axons is of fundamental importance for the proper development of nervous system connectivity in bilaterian animals. A number of conserved axon guidance signaling pathways coordinate to attract or repel axons at the nervous system midline to ensure the proper regulation of midline crossing. The attractive Netrin-Frazzled/DCC (Net-Fra) signaling pathway is widely conserved among bilaterians, but it is not clear whether the mechanisms by which Net and Fra promote midline crossing are also conserved.

View Article and Find Full Text PDF

Tarhana, a traditional fermented food made from cereal flours, yogurt, vegetables, and spices, is recognized for its rich nutritional value and prolonged shelf life. This study investigated the effect of pea protein isolate (PPI) enrichment on select compositional, physical, techno-functional and nutritional properties of tarhana. Six different formulations were prepared by blending PPI and wheat flour (WF) in varying PPI: WF ratios from 0:100 (control) to 100:0.

View Article and Find Full Text PDF

This study investigated the potential of substituting wheat flour with drum-dried overripe Kepok plantain flour (KPF) to enhance instant the nutritional and textural properties of noodles. Noodles were prepared with varying KPF substitutions (10%, 20%, and 30%) and compared to a control (0% KPF). The results show that KPF remarkably influences the adhesiveness, springiness, cohesiveness, and hardness of noodles.

View Article and Find Full Text PDF

The development of alternative proteins derived from fungi-based sources is gaining recognition due to their health benefits and lower environmental impact, compared to traditional animal-based sources. In this study, we investigated the culture conditions for mycelia, focusing on the nutritional requirements and yield optimization using solid surface culture and liquid-state culture methods. Our findings indicate that optimal culture conditions involve glucose as the primary carbon source, with an initial pH of 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!