Introduction: Biosurfactants have been given considerable attention as they are potential candidates for several biotechnological applications.
Materials And Methods: In this study, a promising thermophilic biosurfactant-producing HA-2 was isolated from the volcanic and arid region of Uhud mountain, Madinah, Saudi Arabia. It was identified using 16S rRNA gene sequence analysis. The biosurfactant production ability was screened using different methods such as the drop collapse test, oil spreading test, hemolytic activity test, CTAB test, and emulsification index. The ability of rhamnolipid production by the tested strain was confirmed by the polymerase chain reaction (PCR) of . The affinity of thermophilic HA-2 to hydrophobic substrates was also investigated. Optimization of biosurfactant production was conducted. The biological activities of produced surfactant were investigated.
Results And Discussion: The isolated HA-1 was identified as strain OR911984. It could utilize waste sunflower frying oil (WSFF) oil as a low-cost carbon source. It showed high emulsification activity (52 ± 0.0%) and positive results toward other biosurfactant screening tests. The strain showed high cell adhesion to hexane with 41.2% cell surface hydrophobicity. Fourier-transform infrared (FTIR) spectra indicated the presence of hydrophobic chains that comprise lipids, sugars, and hydrophilic glycolipid components. The optimization results showed the optimal factors included potato peel as a carbon source with 68.8% emulsification activity, yeast extract as a nitrogen source with 60% emulsification activity, a pH of 9 (56.6%), and a temperature of 50° (72%). The kinetics showed that optimum biosurfactant production (572.4 mg/L) was recorded at 5 days of incubation. The produced rhamnolipid biosurfactant showed high antimicrobial activity against some human and plant pathogenic bacterial and fungal isolates and high antioxidant activity (90.4%). In addition, it enhanced wheat () growth, with the greatest enhancement obtained with the 5% concentration. Therefore, thermophilic is a promising rhamnolipid biosurfactant producer that utilizes many organic wastes. The produced biosurfactant could be applied as a promising emulsifier, antimicrobial, antioxidant, and plant growth promoter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173098 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1358175 | DOI Listing |
Adv Colloid Interface Sci
December 2024
Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
Adsorption of rhamnolipid (RL) and surfactin (SF) as well as their mixtures with Triton X-100 (TX100) and Triton X-165 (TX165) at the solution-air (S-A), PTFE (polytetrafluoroethylene)-S, PMMA (poly (methyl methacrylate))-S, Q (quartz)-S, PMMA-A, and Q-A as well as their wetting properties regarding the surface tension of the PTFE, PMMA and quartz and its components and parameters were discussed using the literature data. The mutual influence of biosurfactants and Tritons on the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interfaces tensions was considered in terms of their adsorption at these interfaces for both aqueous and water-ethanol solutions of the biosurfactant mixtures with Tritons. For this purpose there were used different methods on the basis of which the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interface tensions can be predicted and/or described in the function of concentration and composition of the mixtures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States.
Modulating microbial motility and physiology can enhance the production of bacterial macromolecules and small molecules. Herein, a platform of water-soluble and amphiphilic peptidomimetic polyurethanes is reported as a means of regulating bacterial surface behavior and the concomitant production of extracellular polymeric substances (EPS). It is demonstrated that carboxyl (-COOH)-containing polyurethanes exhibited 17-fold and 80-fold enhancements in () swarming and twitching areas, respectively.
View Article and Find Full Text PDFFront Microbiol
November 2024
Department of Civil and Architectural Engineering and Construction Management, University of Wyoming, Laramie, WY, United States.
The micellization properties of rhamnolipids (RLs) in extreme electrolyte concentrations and temperatures have gained considerable attention due to their broad industrial applications. In this study, the aggregation behavior, specifically the micellization pattern (critical micelle concentration (CMC)) of RLs produced from a newly isolated thermophilic strain of from a harsh environment of an oil field, was investigated by a spectrophotometric method at various temperatures (293-393 K) and electrolyte concentrations (NaCl: 2-20%). The result indicated that the values (0.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
November 2024
Henan International Joint Laboratory of Biocatalysis and Bio-based Products, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
Biological treatment has become a promising approach for the efficient remediation of WCO. Identifying effective oil-degrading microorganisms is critical for optimizing these processes. This study focuses on isolating thermo- and salt-tolerant microbes capable of utilizing WCO as a carbon source for the production of high-value compounds.
View Article and Find Full Text PDFMicroorganisms
November 2024
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!