In this study, we present an inexpensive, stable, and easily available boryl radical source (BPhNa) employed in a Halogen Atom Transfer (XAT) methodology. This mild and convenient strategy unlocks the use of not only alkyl iodides as radical precursors but also of the more challenging alkyl and aryl bromides to generate C-centered radicals. The generated radicals were further engaged in the -Markovnikov hydroalkylation of electronically diverse styrenes, therefore achieving the formation of C(sp)-C(sp) and C(sp)-C(sp) bonds. A series of experimental and computational studies revealed the prominent role of BPhNa in the halogen abstraction step.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168110 | PMC |
http://dx.doi.org/10.1039/d4sc01731e | DOI Listing |
J Org Chem
December 2024
College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China.
The photocatalytic dearomative 1,4-hydroboration of naphthalenes with an N-heterocyclic carbene borane (NHC-BH) complex was reported herein with controllable regioselectivity and chemoselectivity. This protocol yielded a wide range of naphthalene derivatives bearing various functional groups, notably bioactive compounds. Hydroboration occurred through the cooperation of photoredox and hydrogen atom transfer via boryl radical addition to naphthalene and further selective protonation.
View Article and Find Full Text PDFOrg Lett
December 2024
College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
NHC boryl radical mediated halogen atom transfer (XAT) is useful in organic synthesis. Yet, most of the reaction ends only with reducing the halogen to hydrogen, that is, the C-X to C-H. This is especially dominant for electron-deficient alkyl halides, where the formed electrophilic radical reacts rapidly with NHC boranes.
View Article and Find Full Text PDFOrg Lett
December 2024
Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
Arylborane complexes ligated by N-heterocyclic carbenes (NHCs) can be synthesized by photoirradiation of a mixture of NHC-boranes and sulfonyl(hetero)arenes. The reaction occurs under mild and convenient conditions without any photocatalyst, which are realized by a radical chain mechanism involving NHC-boryl radicals and sulfonyl radicals. This reaction offered the opportunity to reveal the photophysical property of a 2-borylnaphtho[1,2-]thiazole derivative.
View Article and Find Full Text PDFNat Commun
November 2024
Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China.
The catalytic asymmetric synthesis of axially chiral alkenes remains a daunting challenge due to the lower rotational barrier, especially for longer stereogenic axis (e.g. C-B axis).
View Article and Find Full Text PDFChemistry
November 2024
Department of Chemical Physic, University of Science and Technology of China, Hefei, Anhui, 230026, China.
The advanced strategy using Lewis base-boryl radicals (LBRs) has recently been proposed for the addition of alkyl substituents to the full-carbon quaternary center of an organic molecule. However, as the rate-determining step in the whole route, reaction rate constants of LBRs with substrates are extremely lacking. In this paper, 4-dimethylaminopyridine (DMAP)-BH⋅ was selected as a representative of LBRs, and its reactions with six monochloro-substituted substrates, including three methyl chlorobenzoates and three chlorinated acetanilides were studied in experiments and theoretical calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!