Intrahepatic cholangiocarcinoma (ICC) is a highly invasive malignant tumor. The prognosis of patients with ICC after radical surgical resection remains poor, due to local infiltration, distant metastasis, a high recurrence rate and lack of effective treatment strategies. E26 transformation-specific sequence variant 4 (ETV4) is a pro-carcinogenic factor that is upregulated in several tumors; however, the role of ETV4 in ICC is relatively unknown. The present study aimed to determine the role of ETV4 in the Hccc9810 ICC cell line and to assess how it contributes to epithelial-mesenchymal transition (EMT) in ICC. Hccc9810 cells were infected with lentiviruses to construct stable ETV4-overexpressing cells, stable ETV4 knockdown cells and corresponding control groups. The Cell Counting Kit-8 and Transwell assays were used to quantify cell proliferation, invasion and migration, and the effects on cell cycle progression and apoptosis were detected by flow cytometry. ETV4 was identified as a driver of cell growth, invasion, migration and cell cycle progression, while restraining apoptosis in Hccc9810 cells. Reverse transcription-quantitative PCR and western blotting revealed that increased ETV4 levels may drive EMT by triggering the TGF-β1/Smad signaling pathway. This cascade, in turn, may foster tumor cell proliferation, migration, invasion and cell cycle advancement, and hinder apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170264 | PMC |
http://dx.doi.org/10.3892/ol.2024.14479 | DOI Listing |
iScience
January 2025
Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
Background: Chronic kidney disease (CKD) is a progressive condition that arises from diverse etiological factors, resulting in structural alterations and functional impairment of the kidneys. We aimed to establish the Anoikis-related gene signature in CKD by bioinformatics analysis.
Methods: We retrieved 3 datasets from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs), followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) of them, which were intersected with Anoikis-related genes (ARGs) to derive Anoikis-related differentially expressed genes (ARDEGs).
J Exp Pharmacol
January 2025
University Center of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, West Java, Indonesia.
Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.
Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.
Cytotechnology
April 2025
The Second Department of General Surgery, First Affiliated Hospital of Dali University, Dali, 671000 Yunnan China.
Unlabelled: High expression of Fascin-1 involves high metastasis, high recurrence, and poor prognosis of cancers. However, the related regulatory mechanism in hepatocellular carcinoma (HCC) remains elusive. In this study, Fascin-1 was highly expressed in HCC tissues and cell lines.
View Article and Find Full Text PDFFront Nutr
January 2025
College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
Improving mammary gland epithelial cells proliferation through nutrition is an important approach for enhancing sow milk production and piglet growth. An intermediate metabolite of valine, 3-hydroxyisobutyrate (3-HIB), regulates cellular lipid metabolism. In the present study, we investigated the effects of 3-HIB on porcine mammary gland epithelial cells proliferation and lipid metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!