A dual-additive-based aqueous electrolyte was designed with a pH-buffering additive (Zn(OAc)) and an electrostatic shielding additive (TMAOAc) for high Zn plating/stripping efficiency. The buffering pair, OAc/HOAc, can stabilize the pH value to suppress side hydrogen evolution reactions. Meanwhile, TMA acts as a competitive cation being preferentially adsorbed on the uneven surface of the Zn anode and exerts an electrostatic shielding effect to facilitate flat Zn deposition. Such a dual-additive-based electrolyte promotes an ultra-high Zn plating/stripping efficiency of 99.9% at 1 mA cm and long-term cycling stability for 3600 h at 0.5 mA cm, offering valuable insights for advanced aqueous batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc02062f | DOI Listing |
ACS Nano
January 2025
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Hydrogen evolution reaction and Zn dendrite growth, originating from high water activity and the adverse competition between the electrochemical kinetics and mass transfer, are the main constraints for the commercial applications of the aqueous zinc-based batteries. Herein, a weak H-bond interface with a suspension electrolyte is developed by adding TiO nanoparticles into the electrolytes. Owing to the strong polarity of Ti-O bonds in TiO, abundant hydroxyl functional groups are formed between the TiO active surface and aqueous environment, which can produce a weak H-bond interface by disrupting the initial H-bond networks between the water molecules, thereby accelerating the mass transfer of Zn and reducing the water activity.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Clean Energy and Advanced Nanocatalysis (iClean), School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
Herein, Sn nanoparticles supported on N-doped carbon (Sn/NC) were constructed by a g-CN assisted strategy for the interface layer of Zn anodes in Zn-ion batteries. The presence of Sn/NC effectively regulates the zinc plating/stripping process, which makes Sn/NC@Zn outstanding in both symmetrical and full cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Northeast Normal University, Faculty of Chemistry, Remin Street 5268, 130024, Changchun, CHINA.
Ultrahigh-voltage potassium-ion batteries (PIBs) with cost competitiveness represent a viable route towards high energy battery systems. Nevertheless, rapid capacity decay with poor Coulombic efficiencies remains intractable, mainly attributed to interfacial instability from aggressive potassium metal anodes and cathodes. Additionally, high reactivity of K metal and flammable electrolytes pose severe safety hazards.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.
Potassium (K)-based batteries hold great promise for cryogenic applications owing to the small Stokes radius and weak Lewis acidity of K. Nevertheless, energy-dense (>200 W h kg) K batteries under subzero conditions have seldom been reported. Here, an over 400 W h kg K battery is realized at -40 °C via an anode-free and dual-ion strategy, surpassing these state-of-the-art K batteries and even most Li/Na batteries at low temperatures (LTs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China.
Li metal batteries (LMBs), particularly with a limited Li metal anode and a 5V-class cathode, offer significantly higher energy density compared to the state-of-the-art Li-ion batteries. However, the limited Li anode poses severe challenges to cycling stability due to low efficiency and large volume expansion issues associated with Li. Herein, we design a lightweight and functionalized host composed of Sn nanoparticles embedded into necklace-like B,N,F-doped carbon macroporous fibers (Sn@B/N/F-CMFs) toward anode-less 5V-class LMBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!