In this paper we develop a four compartment within-host model of nutrition and HIV. We show that the model has two equilibria: an infection-free equilibrium and infection equilibrium. The infection free equilibrium is locally asymptotically stable when the basic reproduction number $ \mathcal{R}_0 < 1 $, and unstable when $ \mathcal{R}_0 > 1 $. The infection equilibrium is locally asymptotically stable if $ \mathcal{R}_0 > 1 $ and an additional condition holds. We show that the within-host model of HIV and nutrition is structured to reveal its parameters from the observations of viral load, CD4 cell count and total protein data. We then estimate the model parameters for these 3 data sets. We have also studied the practical identifiability of the model parameters by performing Monte Carlo simulations, and found that the rate of clearance of the virus by immunoglobulins is practically unidentifiable, and that the rest of the model parameters are only weakly identifiable given the experimental data. Furthermore, we have studied how the data frequency impacts the practical identifiability of model parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2024246 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!