A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Seabirds show foraging site and route fidelity but demonstrate flexibility in response to local information. | LitMetric

AI Article Synopsis

  • Fidelity to foraging locations can be beneficial in stable environments but risky in unpredictable conditions, affecting species’ population dynamics amid human-induced changes.
  • A study of common guillemots, Atlantic puffins, razorbills, and black-legged kittiwakes from the Isle of May examined their foraging fidelity across multiple years, revealing that personal foraging experiences influenced trip consistency.
  • All species displayed both site and route fidelity year after year, with puffins showing a tendency to align their foraging trips based on observations of fellow seabirds and local environmental cues.

Article Abstract

Background: Fidelity to a given foraging location or route may be beneficial when environmental conditions are predictable but costly if conditions deteriorate or become unpredictable. Understanding the magnitude of fidelity displayed by different species and the processes that drive or erode it is therefore vital for understanding how fidelity may shape the demographic consequences of anthropogenic change. In particular, understanding the information that individuals may use to adjust their fidelity will facilitate improved predictions of how fidelity may change as environments change and the extent to which it will buffer individuals against such changes.

Methods: We used movement data collected during the breeding season across eight years for common guillemots, Atlantic puffins, razorbills, and black-legged kittiwakes breeding on the Isle of May, Scotland to understand: (1) whether foraging site/route fidelity occurred within and between years, (2) whether the degree of fidelity between trips was predicted by personal foraging effort, and (3) whether different individuals made more similar trips when they overlapped in time at the colony prior to departure and/or when out at sea suggesting the use of the same local environmental cues or information on the decisions made by con- and heterospecifics.

Results: All species exhibited site and route fidelity both within- and between-years, and fidelity between trips in guillemots and razorbills was related to metrics of foraging effort, suggesting they adjust fidelity to their personal foraging experience. We also found evidence that individuals used local environmental cues of prey location or availability and/or information gained by observing conspecifics when choosing foraging routes, particularly in puffins, where trips of individuals that overlapped temporally at the colony or out at sea were more similar.

Conclusions: The fidelity shown by these seabird species has the potential to put them at greater risk in the face of environmental change by driving individuals to continue using areas being degraded by anthropogenic pressures. However, our results suggest that individuals show some flexibility in their fidelity, which may promote resilience under environmental change. The benefits of this flexibility are likely to depend on numerous factors, including the rapidity and spatial scale of environmental change and the reliability of the information individuals use to choose foraging sites or routes, thus highlighting the need to better understand how organisms combine cues, prior experience, and other sources of information to make movement decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177427PMC
http://dx.doi.org/10.1186/s40462-024-00467-9DOI Listing

Publication Analysis

Top Keywords

fidelity
13
environmental change
12
site route
8
route fidelity
8
individuals
8
adjust fidelity
8
fidelity trips
8
personal foraging
8
foraging effort
8
local environmental
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!