Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, a comprehensive study relating acute changes in immune signaling and glial reactivity to neuronal changes and pathological markers after single and repetitive mTBIs is currently lacking. In the current study, we addressed the question of how repeated injuries affect the brain neuroimmune response in the acute phase of injury (< 24 h) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x-5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30 min, 4 h, and 24 h after each injury. We used young adult 2-4 month old 3xTg-AD mice to model the effects of rmTBI in the absence of significant tau and Aβ pathology. We identified pronounced sexual dimorphism in this model, with females eliciting more diverse changes after injury compared to males. Specifically, females showed: (1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression and an increase in AD-related genes within 24 h, (2) each injury significantly increased a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which co-labeled with neurons and correlated with phospho-tau, and (3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and macrophage-associated immune function. Collectively our data suggest that neurons respond to a single injury within 24 h, while other cell types, including astrocytes, transition to inflammatory phenotypes within days of repetitive injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177462 | PMC |
http://dx.doi.org/10.1186/s12974-024-03128-1 | DOI Listing |
Neurotrauma Rep
December 2024
Truman VA Hospital Research Service, Columbia, Missouri, USA.
Primary blast exposure is a predominant cause of mild traumatic brain injury (mTBI) among veterans and active-duty military personnel, and affected individuals may develop long-lasting behavioral disturbances that interfere with quality of life. Our prior research with the "Missouri Blast" model demonstrated behavioral changes relevant to deficits in cognitive and affective domains after exposure to low-intensity blast (LIB). In this study, behavioral evaluations were extended to 3 months post-LIB injury using multifaceted conventional and advanced behavioral paradigms.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Human Repair, Neurosurgery, Ghent University, Ghent, Belgium.
Background: The safe timing window for surgery during the acute phase of inflammation due to traumatic brain injury (TBI) has not been studied extensively. We aimed to elucidate the relationship between the timing of surgery and changes in perioperative serum levels of inflammatory cytokines and factors associated to optimize TBI management in low-middle-income countries.
Methods: A prospective cohort study was conducted among TBI Patients with depressed skull fractures with a GCS > 8 operated at different timing from injury and followed up peri-operatively.
Brain Res
December 2024
Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
Chronic traumatic encephalopathy (CTE) has attracted attention due to sports-related head trauma or repetitive mild traumatic brain injury (mTBI). However, the pathology of CTE remains underexplored. Reproducible and quantitative model of CTE has yet to be established.
View Article and Find Full Text PDFAnn Biomed Eng
December 2024
Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, MSC 1185-208-125, St. Louis, MO, 63130, USA.
Purpose: To determine how the biomechanical vulnerability of the human brain is affected by features of individual anatomy and loading.
Methods: To identify the features that contribute most to brain vulnerability, we imparted mild harmonic acceleration to the head and measured the resulting brain motion and deformation using magnetic resonance elastography (MRE). Oscillatory motion was imparted to the heads of adult participants using a lateral actuator (n = 24) or occipital actuator (n = 24) at 20 Hz, 30 Hz, and 50 Hz.
J West Afr Coll Surg
August 2024
Neurosurgery Unit, Department of Surgery, Korle-Bu Teaching Hospital, Accra, Ghana.
Background: Traumatic brain injury (TBI) is one of the common causes of long-term disabilities, with about 10 million deaths annually.
Objectives: Our aim is to compare the severity and outcomes of TBI between motorcycle and car accident victims.
Materials And Methods: A prospective cohort study focusing on TBI patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!