Trametinib, an anti-tumor drug, promotes oligodendrocytes generation and myelin formation.

Acta Pharmacol Sin

State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.

Published: December 2024

AI Article Synopsis

  • Oligodendrocytes (OLs) are special cells in the brain that help protect nerves, but they can get damaged in diseases like multiple sclerosis.
  • Researchers found that a certain pathway in the body called MEK/ERK stops the formation of these protective cells and makes it harder for the nerves to heal.
  • They discovered that a medicine called Trametinib, which is used for cancer, can help create more OLs and improve healing of nerve damage in both mice and human cells.

Article Abstract

Oligodendrocytes (OLs) are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). Demyelination is a common feature of many neurological diseases such as multiple sclerosis (MS) and leukodystrophies. Although spontaneous remyelination can happen after myelin injury, nevertheless, it is often insufficient and may lead to aggravated neurodegeneration and neurological disabilities. Our previous study has discovered that MEK/ERK pathway negatively regulates OPC-to-OL differentiation and remyelination in mouse models. To facilitate possible clinical evaluation, here we investigate several MEK inhibitors which have been approved by FDA for cancer therapies in both mouse and human OPC-to-OL differentiation systems. Trametinib, the first FDA approved MEK inhibitor, displays the best effect in stimulating OL generation in vitro among the four MEK inhibitors examined. Trametinib also significantly enhances remyelination in both MOG-induced EAE model and LPC-induced focal demyelination model. More exciting, trametinib facilitates the generation of MBP OLs from human embryonic stem cells (ESCs)-derived OPCs. Mechanism study indicates that trametinib promotes OL generation by reducing E2F1 nuclear translocation and subsequent transcriptional activity. In summary, our studies indicate a similar inhibitory role of MEK/ERK in human and mouse OL generation. Targeting the MEK/ERK pathway might help to develop new therapies or repurpose existing drugs for demyelinating diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579360PMC
http://dx.doi.org/10.1038/s41401-024-01313-9DOI Listing

Publication Analysis

Top Keywords

mek/erk pathway
8
opc-to-ol differentiation
8
mek inhibitors
8
trametinib
5
generation
5
trametinib anti-tumor
4
anti-tumor drug
4
drug promotes
4
promotes oligodendrocytes
4
oligodendrocytes generation
4

Similar Publications

Corrigendum to "NNMT contributes to high metastasis of triple negative breast cancer by enhancing PP2A/MEK/ERK/c-Jun/ABCA1 pathway mediated membrane fluidity"[Cancer Lett. 547 (2022) 215884].

Cancer Lett

January 2025

Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Department of Clinical Laboratory, Xiasha Campus, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, PR China. Electronic address:

View Article and Find Full Text PDF

Objectives: Temporomandibular joint (TMJ) osteoarthritis (OA) is an inflammatory disease that involves periarthritis of the TMJ and destruction of cartilage tissue in the mandibular condyle. However, the role of proinflammatory cytokines in the expression levels of matrix metalloproteinase (MMP) remains inconclusive. Thus, in this study, we aimed to investigate the effect of proinflammatory cytokines on the expression of MMPs.

View Article and Find Full Text PDF

The mesenchymal stem cell (MSC) secretome plays a pivotal role in shaping the tumor microenvironment, influencing both cancer progression and potential therapeutic outcomes. In this research, by using publicly available dataset GSE196312, we investigated the role of MSC secretome on breast cancer cell gene expression. Our results raveled differentially expressed genes, including the upregulation of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1), C-C Motif Chemokine Ligand 28 (CCL28), and downregulation of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type I Alpha 3 Chain (COL1A3), Collagen Type III Alpha 1 Chain (COL3A1), which contributing to extra cellular matrix (ECM) weakening and promoting cell migration.

View Article and Find Full Text PDF

Shh Protects the Injured Spinal Cord in Mice by Promoting the Proliferation and Inhibiting the Apoptosis of Nerve Cells via the Gli1-TGF-β1/ERK Axis.

Cell Biochem Funct

January 2025

Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Spinal cord injury (SCI) is a common neurological trauma that cannot be completely cured with surgical techniques and medications. In this study, we established a mouse SCI model and used an adeno-associated virus (AAV) to achieve the high expression of sonic hedgehog (Shh) at the injury site to further investigate the therapeutic effect and mechanism of Shh on SCI. The results of the present study show that Shh may promote motor function recovery.

View Article and Find Full Text PDF

Background: Mitogen activated protein kinase (MAPK) signaling is a critical regulator of microglial phenotype, including phagocytic function, cytokine expression, and motility, among others. Importantly, both canonical and non-canonical MAPK signaling is directly activated by RTKs, including Interestingly, CSF1R, is activated by two agonists, CSF1 and IL-34, which have been shown to activate the receptor in different ways that can lead to However, little is known about how the affect microglial MAPK signaling, and whether their effects are dependent on disease state/Aβ exposure. In this study, we hypothesized that IL-34 and CSF-1 elicit distinct patterns of MAPK signaling activation in microglia and MAPK activation would be dependent on whether the cells were exposed to Aβ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!