A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-label classification of retinal diseases based on fundus images using Resnet and Transformer. | LitMetric

Retinal disorders are a major cause of irreversible vision loss, which can be mitigated through accurate and early diagnosis. Conventionally, fundus images are used as the gold diagnosis standard in detecting retinal diseases. In recent years, more and more researchers have employed deep learning methods for diagnosing ophthalmic diseases using fundus photography datasets. Among the studies, most of them focus on diagnosing a single disease in fundus images, making it still challenging for the diagnosis of multiple diseases. In this paper, we propose a framework that combines ResNet and Transformer for multi-label classification of retinal disease. This model employs ResNet to extract image features, utilizes Transformer to capture global information, and enhances the relationships between categories through learnable label embedding. On the publicly available Ocular Disease Intelligent Recognition (ODIR-5 k) dataset, the proposed method achieves a mean average precision of 92.86%, an area under the curve (AUC) of 97.27%, and a recall of 90.62%, which outperforms other state-of-the-art approaches for the multi-label classification. The proposed method represents a significant advancement in the field of retinal disease diagnosis, offering a more accurate, efficient, and comprehensive model for the detection of multiple retinal conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-024-03144-6DOI Listing

Publication Analysis

Top Keywords

multi-label classification
12
fundus images
12
classification retinal
8
retinal diseases
8
resnet transformer
8
retinal disease
8
proposed method
8
retinal
6
diseases
4
diseases based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!