Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Recent research has demonstrated how epigenetic mechanisms regulate the host-virus interactions in COVID-19. It has also shown that microRNAs (miRNAs) are one of the three fundamental mechanisms of the epigenetic regulation of gene expression and play an important role in viral infections. A pilot study published by our research group identified, through next-generation sequencing (NGS), that miR-4433b-5p, miR-320b, and miR-16-2-3p are differentially expressed between patients with COVID-19 and controls. Thus, the objectives of this study were to validate the expression of these miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR) and to perform in silico analyses. Patients with COVID-19 (n = 90) and healthy volunteers (n = 40) were recruited. MiRNAs were extracted from plasma samples and validated using qRT-PCR. In addition, in silico analyses were performed using mirPath v.3 software. MiR-320b was the only miRNA upregulated in the case group com-pared to the control group. The in silico analyses indicated the role of miR-320b in the regulation of the KITLG gene and consequently in the inflammatory process. This study confirmed that miR-320b can distinguish patients with COVID-19 from control participants; however, further research is needed to determine whether this miRNA can be used as a target or a biomarker.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176351PMC
http://dx.doi.org/10.1038/s41598-024-64325-9DOI Listing

Publication Analysis

Top Keywords

patients covid-19
12
silico analyses
12
mir-320b
5
covid-19
5
increased expression
4
expression mir-320b
4
mir-320b blood
4
blood plasma
4
patients
4
plasma patients
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!