A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Drop impact onto immiscible liquid films floating on pools. | LitMetric

Drop impact onto immiscible liquid films floating on pools.

Sci Rep

Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.

Published: June 2024

The interface dynamics of a droplet impacting onto a liquid pool has been well studied, and the common interfacial velocity quantified for the cases when the pool is both the same and a different fluid to the impacting droplet. In this work we investigate, experimentally and computationally, the scenario of a droplet impacting onto a pool of the same fluid coated by a layer of another fluid with various thicknesses. The effect of the film thickness on the penetration velocity of the upper droplet-film interface is measured for experiments and simulations, and carefully compared to theoretical predictions for early-to-moderate timescales in the limiting cases of: (i) zero film thickness, in which the film has no effect and thus behaves like a fluid on same fluid impact, and (ii) infinite film thickness, in which the underlying pool has no effect. For finite layer thickness cases we carefully quantify the transition between the two limiting scenarios, and provide insight into the interfacial and flow quantities of interest, with a robust transitional behaviour observed over a rich parametric landscape. This exploration provides new quantitative insight into the nonlinear behaviour of the multi-fluid systems in newly explored finite thickness regimes, as well as a clear delineation of their effect in the context of the noted distinguished limits, with films of up to one impacting drop diameter in thickness shown to induce meaningful interpretable changes in the resulting post-impact dynamics. We also explore longer timescale features of the lower interface dynamics, revealing comparatively lower velocities and larger film thicknesses as the liquid film viscosity is increased.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176368PMC
http://dx.doi.org/10.1038/s41598-024-62427-yDOI Listing

Publication Analysis

Top Keywords

film thickness
12
interface dynamics
8
droplet impacting
8
pool fluid
8
film
6
thickness
6
fluid
5
drop impact
4
impact immiscible
4
immiscible liquid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!