Promising interlayer sensitization strategy for the construction of high-performance blue hyperfluorescence OLEDs.

Light Sci Appl

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.

Published: June 2024

Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials are promising candidates for organic light-emitting diodes (OLEDs) with narrow electroluminescence (EL) spectra. Current researches focus on fabricating hyperfluorescence OLEDs to improve EL efficiencies of MR-TADF emitters by co-doping them with TADF sensitizers in a single host layer. However, in many cases, the polarity of the single host could be not suitable for both blue MR-TADF emitters and blue TADF sensitizers, resulting in broadened EL spectra in high-polar hosts or decreased EL efficiencies in low-polar hosts. Herein, we wish to report an efficient sensitization strategy for blue MR-TADF emitters by constructing an interlayer-sensitizing configuration, in which the blue TADF sensitizers and blue MR-TADF emitters are separated into two closely aligned host layers with high polarity and low polarity, respectively. Based on this strategy, efficient blue hyperfluorescence OLEDs are realized and verified by employing various TADF sensitizers and different MR-TADF emitters, furnishing outstanding external quantum efficiencies of up to 38.8% and narrow EL spectra. These results validate the feasibility and universality of this interlayer sensitization strategy, which provides an effective alternative to high-performance blue hyperfluorescence OLEDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176382PMC
http://dx.doi.org/10.1038/s41377-024-01490-6DOI Listing

Publication Analysis

Top Keywords

mr-tadf emitters
20
hyperfluorescence oleds
16
tadf sensitizers
16
sensitization strategy
12
blue hyperfluorescence
12
blue mr-tadf
12
interlayer sensitization
8
blue
8
high-performance blue
8
single host
8

Similar Publications

The development of narrowband emissive, bright, and stable solution-processed organic light-emitting diodes (SP-OLEDs) remains a challenge. Here, a strategy is presented that merges within a single emitter a TADF sensitizer responsible for exciton harvesting and an MR-TADF motif that provides bright and narrowband emission. This emitter design also shows strong resistance to aggregate formation and aggregation-cause quenching.

View Article and Find Full Text PDF

Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials have great potential for applications in ultrahigh-definition (UHD) organic light-emitting diode (OLED) displays, that benefit from their narrowband emission characteristic. However, key challenges such as aggregation-caused quenching (ACQ) effect and slow triplet-to-singlet spin-flip process, especially for blue MR-TADF materials, continue to impede their development due to planar skeletons and relatively large ΔESTs. Here, an effective strategy that incorporates multiple carbazole donors into the parent MR moieties is proposed, synergistically engineering their excited states and steric hindrances to enhance both the spin-flip process and quenching resistance.

View Article and Find Full Text PDF

The multiple resonance thermally activated delayed fluorescence (MR-TADF) device has drawn great attention due to their outstanding efficiency and color purity. However, the efficiency of solution-processed MR-TADF devices is still far behind their vacuum-deposited counterparts, due to the uncontrollable horizontal emitting dipole orientation for emitters during solution process, resulting in low light out-coupling efficiency. Here, we proposed a new strategy namely electrostatic interaction between a dendritic host with high positive electrostatic potential (ESP) and dendritic emitter with multiple negative ESP sites, which could induce high horizontal dipole ratio (ΘII) up to 83.

View Article and Find Full Text PDF

Thermally activated delayed fluorescence (TADF) materials with high photoluminescence quantum yields and a fast reverse intersystem crossing (RISC) are of the highest interest for organic light-emitting diodes (OLEDs). In the past decade, triaryl boranes with multiple resonance effect (MR) have captured significant attention. The efficiency of MR-TADF emitters strongly depends on small singlet-triplet energy gaps (ΔE), but also on large reverse intersystem crossing (RISC) rate constants (k).

View Article and Find Full Text PDF

The degradation mechanism of multi-resonance thermally activated delayed fluorescence materials.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!