The photocatalytic wastewater hydrogen production process with superior performance to the overall water splitting.

J Colloid Interface Sci

National Center for Nanoscience and Technology, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: January 2025

The utilization of a cost-free sacrificial agent is a novel approach to significantly enhance the efficiency of photocatalytic hydrogen (H) production by water splitting. Wastewater contains various organic pollutants, which have the potential to be used as hole sacrificial agents to promote H production. Our studies on different pollutants reveals that not all pollutants can effectively promote H production. However, when using the same pollutants, not all photocatalysts achieved a higher H evolution rate than pure water. Only when the primary oxidizing active species of the photocatalyst are •OH radicals, which are generated by photogenerated holes, and when the pollutants are easily attacked and degraded by •OH radicals, can the production of H be effectively promoted. It is noteworthy that the porous brookite TiO photocatalyst exhibits a significantly higher H evolution rate in Reactive Red X-3B and Congo Red, reaching as high as 26.46 mmol⋅g⋅h and 32.85 mmol⋅g ⋅h, respectively, which is 2-3 times greater than that observed in pure water and is 10 times greater than most reported studies. The great significance of this work lies in the potential for efficient H production through the utilization of wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.06.039DOI Listing

Publication Analysis

Top Keywords

hydrogen production
8
water splitting
8
promote production
8
higher evolution
8
evolution rate
8
pure water
8
•oh radicals
8
times greater
8
production
6
pollutants
5

Similar Publications

Modelling the human Coenzyme Q deficiency in Drosophila melanogaster.

Free Radic Biol Med

January 2025

Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain; CIBERER, U729, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

The interference of the expression of each of the genes involved in the synthesis of coenzyme Q (CoQ) in Drosophila melanogaster can help to understand the pathophysiology of CoQ-dependent mitochondrial diseases in humans. We have knocked-down all genes involved in the CoQ biosynthesis pathway at different temperatures to induce depletion of CoQ at different levels throughout the body and in a tissue-specific manner. The efficiency of the knockdowns was quantified by Q-RTPCR and determination of CoQ levels by HPLC-UV+ECD.

View Article and Find Full Text PDF

Homologous metal-organic complexes reconstructed oxy-hydroxide heterostructures as efficient oxygen evolution electrocatalysts.

J Colloid Interface Sci

January 2025

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 China. Electronic address:

It is imperative to investigate more cost-effective, long-lasting, efficient, and reliable non-noble metal electrocatalysts for the oxygen evolution reaction (OER) in hydrogen production via water splitting. Metal-organic complexes have been extensively researched and utilized for this purpose, yet their transformation in this process remains intriguing and underexplored. To enable a comprehensive comparison, we synthesized three types of metal-organic complexes with varying morphologies using the same raw material.

View Article and Find Full Text PDF

Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials possess unique advantages of high-efficiency and narrowband emission, which have rapidly occupied an important position in the field of organic light-emitting diodes (OLEDs). In recent years, significant advancements have been made in the development of MR-TADF materials, particularly in achieving spectral narrowing for high-color-purity OLED applications. Based on diverse MR-TADF molecular skeletons, this review summarizes the primary molecular strategies to narrow spectrum by suppressing structural relaxation and intermolecular interactions.

View Article and Find Full Text PDF

The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.

View Article and Find Full Text PDF

The clinical application of curcumin (CUR) is restricted by its low solubility, instability, and poor bioavailability. To overcome these limitations, we developed a novel stearic acid-grafted inulin-based nano-delivery system for CUR encapsulation. The structure of stearoyl inulin (SA-IN) was characterized using Fourier-transform infrared spectroscopy, hydrogen nuclear magnetic resonance, thermogravimetric analysis, and contact angle measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!