Employees in today's workplace express strong desire for policies allowing for temporal flexibility (e.g., paid time off, schedule change, working from home), yet these policies are underutilized even when employees have them. We argue that an occupational norm that emphasizes long work hours is a key to understanding this puzzle. Using individual-level data from the Leave Module of the 2011 American Time Use Survey (supplemented with the 2017-2018 version), matched with occupation-level data constructed from O*NET and the American Community Surveys, we show that individuals working in occupations with higher prevalence of "overwork" (defined by working 50 or more hours per week) are less likely to use paid leave. For flexible work policies, the same pattern is found for childless men, fathers, and childless women, but mothers are more likely to use them in occupations with higher prevalence of overwork. Our decomposition analysis shows that widespread overwork in professional and managerial occupations offsets much of what makes them amenable to the use of leave and flexible work policies, relative to other occupations. These findings suggest that even when policies are available, the success of flexible work policies largely depends on how organizations tackle the overwork norm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ssresearch.2024.103006 | DOI Listing |
Inorg Chem
January 2025
Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China.
Promoting the rate of the oxygen reduction reaction (ORR) is critical for boosting the overall energy efficiency of the flexible zinc-air batteries (FZABs). Inspired by nature, we designed "branch-leaf" like hierarchical porous carbon nanofibers with ultralow loadings of Ir nanoparticles (NPs) derived from covalent-organic framework/metal-organic framework (COF/MOF) core-shell hybrids. The as-obtained Ir/FeZn-hierarchical porous carbon nanofibers (HPCNFs) showcase enhanced ORR performance, and the ultralow Ir loading reduces the cost while maintaining catalytic capacity.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2025
National Cancer Institute, Bethesda, MD. Electronic address:
This white paper examines the potential of pioneering technologies and artificial intelligence (AI)-driven solutions in advancing clinical trials involving radiotherapy. As the field of radiotherapy evolves, the integration of cutting-edge approaches such as radiopharmaceutical dosimetry, FLASH radiotherapy, image-guided radiation therapy (IGRT), and AI promises to improve treatment planning, patient care, and outcomes. Additionally, recent advancements in quantum science, linear energy transfer/relative biological effect (LET/RBE), and the combination of radiotherapy and immunotherapy create new avenues for innovation in clinical trials.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Shaanxi University of Science & Technology, Xi'an, 710021, China. Electronic address:
The implementation of circular economy (CE) policies in the management of urban policies have become essential for improving overall quality of life, development of green energy, and environmental management hence improving the image of cities. This research focuses on uncovering the core concepts of CE within urban environments, emphasizing actions that can improve green energy and environmental management. The CE aims to create a closed-loop system by prioritizing practices like remanufacturing, reusing, and recycling, which collectively help decrease resource usage and limit environmental damage.
View Article and Find Full Text PDFBioorg Chem
January 2025
Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China. Electronic address:
The assessment of early atherosclerosis (AS) via fluorescence imaging is crucial for advancing early diagnosis research. Abnormal inflammation biomarkers, including hypochlorous acid (HClO) and viscosity within mitochondria, have been closely linked to the pathogenesis of AS. However, current fluorescent probes predominantly rely on unimodal imaging that targets a single biomarker and lacks mitochondrial specificity, which can result in potential false signal readouts due to the complex intracellular environment.
View Article and Find Full Text PDFBiomater Adv
January 2025
Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China.
Excessive oxidative stress and persistent inflammation are key factors contributing to the formation of diabetic chronic wounds. Delivering antioxidants through a microenvironment-responsive hydrogel system can effectively enhance wound healing and tissue regeneration. In this study, we developed a novel pH- and glucose-responsive hydrogel using Schiff base reaction and phenyl borate group for intelligent antioxidant release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!