A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Caveolin-1 differentially regulates the transforming growth factor-β and epidermal growth factor signaling pathways in MDCK cells. | LitMetric

Caveolin-1 differentially regulates the transforming growth factor-β and epidermal growth factor signaling pathways in MDCK cells.

Biochim Biophys Acta Gen Subj

Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan. Electronic address:

Published: September 2024

Caveolin-1 is critical for interacting with the TGF-β receptor (TGFβR) and EGF receptor (EGFR) signaling, often observed in advanced cancers and tissue fibrosis. However, the mechanism underlying caveolin-1-mediated transactivation of TGFβR and EGFR signaling remains unclear. Therefore, we sought to determine whether caveolin-1 is involved in canonical and non-canonical TGFβR and EGFR signaling transactivation in this study. Methyl-β-cyclodextrin (MβCD) was used to disrupt the cholesterol-containing membranes domains, and the caveolin-1 scaffolding domain (CSD) peptide was used to mimic the CSD of caveolin-1. Additionally, we transfected the Madin-Darby canine kidney cells with wild-type or phosphorylation-defective caveolin-1. We discovered that tyrosine 14 of caveolin-1 was critical for the negative regulation of TGFβR and EGFR canonical signaling. On the contrary, caveolin-1 inhibited TGF-β1-induced ERK2 activation independent of tyrosine 14 phosphorylation. Although EGF failed to induce Smad3 phosphorylation in caveolin-1 knockdown cells, it activated Smad3 upon MβCD co-treatment, indicating that caveolin-1 indirectly regulated the non-canonical pathway of EGF. In conclusion, caveolin-1 differentially modulates TGFβR and EGFR signaling. Thus, targeting caveolin-1 is a potential strategy for treating diseases involving TGF-β1 and EGF signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2024.130660DOI Listing

Publication Analysis

Top Keywords

egfr signaling
16
tgfβr egfr
16
caveolin-1
12
caveolin-1 differentially
8
caveolin-1 critical
8
signaling
7
tgfβr
5
egfr
5
differentially regulates
4
regulates transforming
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!