A cavity induced mode hybridization plasmonic sensor for portable detection of exosomes.

Biosens Bioelectron

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, 350108, China. Electronic address:

Published: October 2024

Exosomes have been considered as promising biomarkers for cancer diagnosis due to their abundant information from originating cells. However, sensitive and reliable detection of exosomes is still facing technically challenges due to the lack of a sensing platform with high sensitivity and reproducibility. To address the challenges, here we propose a portable surface plasmon resonance (SPR) sensing of exosomes with a three-layer Au mirror/SiO spacer/Au nanohole sensor, fabricated by an economical polystyrene nanosphere self-assembly method. The SiO spacer can act as an optical cavity and induce mode hybridization, leading to excellent optimization of both sensitivity and full width at half maximum compared with normal single layer Au nanohole sensors. When modified with CD63 or EpCAM aptamers, a detection of limit (LOD) of as low as 600 particles/μL was achieved. The sensors showed good capability to distinguish between non-tumor derived L02 exosomes and tumor derived HepG2 exosomes. Additionally, high reproducibility was also achieved in detection of artificial serum samples with RSD as low as 2%, making it feasible for clinical applications. This mode hybridization plasmonic sensor provides an effective approach to optimize the detection sensitivity of exosomes, pushing SPR sensing one step further towards cancer diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2024.116492DOI Listing

Publication Analysis

Top Keywords

mode hybridization
12
hybridization plasmonic
8
plasmonic sensor
8
detection exosomes
8
cancer diagnosis
8
spr sensing
8
exosomes
7
detection
5
cavity induced
4
induced mode
4

Similar Publications

Developing hybrid fluorescence (FL)/room-temperature phosphorescent (RTP) materials in dry-state, aqueous, and organic solvents holds paramount importance in broadening their applications. However, it is extremely challenging due to dissolved oxygen and solvent-assisted relaxation causing RTP quenching in an aqueous environment and great dependence on SiO-based materials. Herein, an efficient endogenetic carbon dot (CD) strategy within melamine-formaldehyde (MF) microspheres to activate RTP of CDs has been proposed through the pyrolysis of isophthalic acid (IPA) molecules and branched-chain intra-microspheres.

View Article and Find Full Text PDF

A novel hybrid model for air quality prediction via dimension reduction and error correction techniques.

Environ Monit Assess

December 2024

School of Big Data and Statistics, Anhui University, Hefei, 230601, Anhui, China.

The monitoring of air pollution through the air quality index (AQI) is a fundamental tool in ensuring public health protection. Accurate prediction of air quality is necessary for the timely implementation of measures to control and manage air pollution, thereby mitigating its detrimental impact on human health. A novel hybrid prediction model is proposed, which is EMD-KMC-EC-SSA-VMD-LSTM.

View Article and Find Full Text PDF

Phenylarsonic acid (PAA) compounds, widely used in animal husbandry, pose a considerable environmental threat owing to their potential transformation into toxic inorganic arsenic species. To efficiently decontaminate PAA and adsorb secondary As(V), a hybrid CuFeO-modified carbon nanotube (CuFeO-CNT) filter was developed in this study. The hybrid CuFeO-CNT filter functioned as an effective catalyst, convective filtration medium, electrode, and adsorbent.

View Article and Find Full Text PDF

Soft actuators are limited by single-mode driving technology, which poses challenges in dealing with complex and multidimensional movements. In this study, a multiresponsive soft actuator was fabricated by integrating a microwrinkling structure into an MXene-based film, enabling programmable motions. To achieve this, we introduced -hexane into the film preparation process and utilized its rapid volatilization to accelerate the shrinkage difference between the film and the substrate.

View Article and Find Full Text PDF

Multiple interacting photonic modes in strongly coupled organic microcavities.

Philos Trans A Math Phys Eng Sci

December 2024

Department of Physics and Astronomy, University of Exeter, Exeter, Devon EX4 4QL, UK.

Room-temperature cavity quantum electrodynamics with molecular materials in optical cavities offers exciting prospects for controlling electronic, nuclear and photonic degrees of freedom for applications in physics, chemistry and materials science. However, achieving strong coupling with molecular ensembles typically requires high molecular densities and substantial electromagnetic-field confinement. These conditions usually involve a significant degree of molecular disorder and a highly structured photonic density of states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!