A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of pollutants accumulation in the submerged zone for pyrite-based bioretention facilities under continuous rainfall events. | LitMetric

Investigation of pollutants accumulation in the submerged zone for pyrite-based bioretention facilities under continuous rainfall events.

J Environ Manage

Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China. Electronic address:

Published: July 2024

AI Article Synopsis

  • * Results show that light rain significantly decreases the effectiveness of pollutant removal in subsequent rainfall events, with notable reductions in ammonia and nitrate removal efficiency over time.
  • * The research highlights the important roles of substrate composition and microbial activity in nitrogen conversion, providing valuable insights for improving bioretention systems under varying rainfall conditions.

Article Abstract

Submerged zone in bioretention facilities for stormwater treatment has been approved to be an effective structure amendment to improve denitrification capability. However, the role and influence of water quality changes in the submerged zone under natural continuous random rainfall patterns are still not clear, especially when the rainfall is less than the pore water in the submerged zone. In this study, continuous rainfall events with different rainfall volume (light rain-light rain-heavy rain) were designed in a lab-scale woodchip mulched pyrite bioretention facility to test the effects of rainfall pattern. The results exhibited that light rain events significantly affected the pollutant removal performance of bioretention for the next rainfall. Different effects were observed during the long-term operation. In the 5th month, light rain reduced the ammonia removal efficiency of subsequent rainstorm events by 8.70%, while in the 12th month, when nitrate leakage occurred, light rain led to a 40.24% reduction in the next heavy rain event's nitrate removal efficiency. Additionally, light rain would also affect the concentration of by-products in the next rainfall. Following a light rain, the concentration of sulfate in the subsequent light rainfall can increase by 24.4 mg/L, and by 11.92 mg/L in a heavy rain. The water quality in the submerged zone and media characteristics analysis suggested that nitrogen conversion capacity of the substrate and microbes, such as Nitrospira (2.86%) and Thiobacillus (35.71%), as well as the in-situ accumulation of pollutants under light rain played important roles. This study clarifies the relationship between successive rainfall events and provides a more comprehensive understanding of bioretention facilities. This is beneficial for field study of bioretention facilities in the face of complex rainfall events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.121448DOI Listing

Publication Analysis

Top Keywords

light rain
24
submerged zone
20
bioretention facilities
16
rainfall events
16
rainfall
11
rain
9
continuous rainfall
8
water quality
8
light
8
removal efficiency
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!