A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A GA-stacking ensemble approach for forecasting energy consumption in a smart household: A comparative study of ensemble methods. | LitMetric

The considerable amount of energy utilized by buildings has led to various environmental challenges that adversely impact human existence. Predicting buildings' energy usage is commonly acknowledged as encouraging energy efficiency and enabling well-informed decision-making, ultimately leading to decreased energy consumption. Implementing eco-friendly architectural designs is paramount in mitigating energy consumption, particularly in recently constructed structures. This study utilizes clustering analysis on the original dataset to capture complex consumption patterns over various periods. The analysis yields two distinct subsets that represent low and high consumption patterns and an additional subset that exclusively encompasses weekends, attributed to the specific behavior of occupants. Ensemble models have become increasingly popular due to advancements in machine learning techniques. This research utilizes three discrete algorithms, namely Artificial Neural Network (ANN), K-nearest neighbors (KNN), and Decision Trees (DT). In addition, the application employs three more machine learning algorithms bagging and boosting: Random Forest (RF), Extreme Gradient Boosting (XGB), and Gradient Boosting Trees (GBT). To augment the accuracy of predictions, a stacking ensemble methodology is employed, wherein the forecasts generated by many algorithms are combined. Given the obtained outcomes, a thorough examination is undertaken, encompassing the techniques of stacking, bagging, and boosting, to conduct a comprehensive comparative study. It is pertinent to highlight that the stacking technique consistently exhibits superior performance relative to alternative ensemble methodologies across a spectrum of heterogeneous datasets. Furthermore, using a genetic algorithm enables the optimization of the combination of base learners, resulting in a notable enhancement in prediction accuracy. After implementing this optimization technique, GA-Stacking demonstrated remarkable performance in Mean Absolute Percentage Error (MAPE) scores. The improvement observed was substantial, surpassing 90 percent for all datasets. In addition, in subset-1, subset-2, and subset-3, the achieved R scores were 0.983, 0.985, and 0.999, respectively. This represents a substantial advancement in forecasting the energy consumption of residential buildings. Such progress underscores the potential advantages of integrating this framework into the practices of building designers, thereby fostering informed decision-making, design management, and optimization prior to construction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.121264DOI Listing

Publication Analysis

Top Keywords

energy consumption
16
forecasting energy
8
comparative study
8
consumption patterns
8
machine learning
8
bagging boosting
8
gradient boosting
8
energy
7
consumption
6
ga-stacking ensemble
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!