Schizophrenia (SCZ) is a severe psychiatric disorder with unclear pathophysiology. Moreover, there is no specific biological marker to help clinicians to define a diagnosis, and medication is decided according to the psychiatrist's experience. In this scenario, microRNAs (miRNAs), which are small noncoding RNA molecules that regulate several genes, emerge as potential peripheral biomarkers to help not only the evaluation of the disease state but also the treatment response. Here, we systematically reviewed indexed literature and evaluated follow-up studies investigating the changes in miRNA expression due to antipsychotic treatment. We also assessed target genes and performed pathway enrichment analysis of miRNAs listed in this systematic review. A total of 11 studies were selected according to research criteria, and we observed that 28 miRNAs play a relevant role in schizophrenia pathogenesis or response to antipsychotic treatment, seven of those of extreme interest as possible biomarkers either for condition or treatment. Predicted targets of the miRNAs reviewed here were previously associated with schizophrenia in genome-wide studies, and pathway analysis showed enrichment for genes related to neural processes. With this review, we expect to highlight the importance of miRNAs in schizophrenia pathogenesis and its treatment and point out interesting miRNAs to future studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpsychires.2024.06.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!