A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unraveling sex differences in Parkinson's disease through explainable machine learning. | LitMetric

Unraveling sex differences in Parkinson's disease through explainable machine learning.

J Neurol Sci

Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196 Rome, Italy; AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy. Electronic address:

Published: July 2024

Sex differences affect Parkinson's disease (PD) development and manifestation. Yet, current PD identification and treatments underuse these distinctions. Sex-focused PD literature often prioritizes prevalence rates over feature importance analysis. However, underlying aspects could make a feature significant for predicting PD, despite its score. Interactions between features require consideration, as do distinctions between scoring disparities and actual feature importance. For instance, a higher score in males for a certain feature doesn't necessarily mean it's less important for characterizing PD in females. This article proposes an explainable Machine Learning (ML) model to elucidate these underlying factors, emphasizing the importance of features. This insight could be critical for personalized medicine, suggesting the need to tailor data collection and analysis for males and females. The model identifies sex-specific differences in PD, aiding in predicting outcomes as "Healthy" or "Pathological". It adopts a system-level approach, integrating heterogeneous data - clinical, imaging, genetics, and demographics - to study new biomarkers for diagnosis. The explainable ML approach aids non-ML experts in understanding model decisions, fostering trust and facilitating interpretation of complex ML outcomes, thus enhancing usability and translational research. The ML model identifies muscle rigidity, autonomic and cognitive assessments, and family history as key contributors to PD diagnosis, with sex differences noted. The genetic variant SNCA-rs356181 may be more significant in characterizing PD in males. Interaction analysis reveals a greater occurrence of feature interplay among males compared to females. These disparities offer insights into PD pathophysiology and could guide the development of sex-specific diagnostic and therapeutic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2024.123091DOI Listing

Publication Analysis

Top Keywords

sex differences
12
parkinson's disease
8
explainable machine
8
machine learning
8
model identifies
8
feature
5
unraveling sex
4
differences
4
differences parkinson's
4
disease explainable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!