Background: Both we and others have found that RBC counts are significantly lower in older compared to younger. However, when gender is factored in, a significant age-related decrease of RBC counts is observed only in men but not in women.
Methods: qPCR and confocal microscopy were used to detect the presence of mtDNA in RBCs. Flow cytometry and specific inhibitors were used to determine how RBCs uptake cf-mtDNA. The peripheral blood was collected from 202 young adults and 207 older adults and RBC and plasma were isolated. The levels of TLR9RBCs and apoptotic RBCs after uptake of cf-mtDNA by RBCs were measured by flow cytometry. The kit detects changes in SOD and MDA levels after cf-mtDNA uptake by RBCs. Young RBCs (YR) and old RBCs (OR) from single individuals were separated by Percoll centrifugation.
Results: We found a significant decrease in RBC counts and a significant increase in the RDW with aging only in men. We also found that significantly elevated mtDNA content in RBCs was observed only in men during aging and was not found in women. Further studies demonstrated that RBCs could take up cf-mtDNA via TLR9, and the uptake of mtDNA might lead to a decrease in the RBC number and an increase in RDW due to an increase of oxidative stress.
Conclusions: The RBC mtDNA content might be a potential marker of RBC aging and the elevated RBC mtDNA content might be the cause of faster senescence in males than females.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archger.2024.105504 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina.
Introduction: Polycystic Ovary Syndrome (PCOS) affects 5-20% of reproductive-aged women. Insulin resistance (IR) is common in PCOS with consequent elevated risks of metabolic disorders and cardiovascular mortality. PCOS and obesity are complex conditions associated with Metabolic Syndrome (MS), contributing to cardiovascular disease and type 2 diabetes mellitus (T2D).
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy.
Under low O, the heart of Carassius auratus (goldfish) shows an enhanced hemodynamics. This is observed in ex vivo cardiac preparations from animals acclimated to both normoxia and short-term (4 days) moderate hypoxia and perfused for 90 min with a hypoxic medium. Under short-term hypoxia, this is associated with a higher ventricular muscularity and an expanded mitochondrial compartment.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
Department of Chinese Materia Medica, Changchun Sci-Tech University, Changchun, PR China.
Hance is an important plant owing to its medicinal root and edible fruit, and extensively distributed in China. In this study, we reported the complete chloroplast genome of . The chloroplast genome was 156,335 bp in size with the overall GC content of 37.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
East China Sea Ecological Center of the Ministry of Natural Resources, MNR, Shanghai, China.
In this study, the complete mitochondrial genome of was sequenced by Illumina high-throughput sequencing and its characteristics were analyzed. The mitogenome of is 16,635 bp long, and it encodes the standard set of 13 PCGs, 22 tRNA genes, and two rRNA genes. The mitogenome has a GC content of 29.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
College of Pharmacy, Dali University, Dali, China.
, a significant folk medicinal plant, is utilized to treat a variety of ailments. In this study, we reported the complete chloroplast genome sequence of this species. The length of the complete chloroplast genome was 155,810 bp, included a pair of inverted repeat (IR) regions (26,340 bp), a large single-copy region (LSC, 84,853 bp), and a small single-copy region (SSC, 18,277 bp).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!