Design and synthesis of hemicyanine-based NIRF probe for detecting Aβ aggregates in Alzheimer's disease.

Bioorg Chem

Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang 110016, China. Electronic address:

Published: September 2024

Alzheimer's disease (AD), a progressive neurodegenerative disorder, has garnered increased attention due to its substantial economic burden and the escalating global aging phenomenon. Amyloid-β deposition is a key pathogenic marker observed in the brains of Alzheimer's sufferers. Based on real-time, safe, low-cost, and commonly used, near-infrared fluorescence (NIRF) imaging technology have become an essential technique for the detection of AD in recent years. In this work, NIRF probes with hemicyanine structure were designed, synthesized and evaluated for imaging Aβ aggregates in the brain. We use the hemicyanine structure as the parent nucleus to enhance the probe's optical properties. The introduction of PEG chain is to improve the probe's brain dynamice properties, and the alkyl chain on the N atom is to enhance the fluorescence intensity of the probe after binding to the Aβ aggregates as much as possible. Among these probes, Z2, Z3, Z6, X3, X6 and T1 showed excellent optical properties and high affinity to Aβ aggregates (K = 24.31 ∼ 59.60 nM). In vitro brain section staining and in vivo NIRF imaging demonstrated that X6 exhibited superior discrimination between Tg mice and WT mice, and X6 has the best brain clearance rate. As a result, X6 was identified as the optimal probe. Furthermore, the docking theory calculation results aided in describing X6's binding behavior with Aβ aggregates. As a high-affinity, high-selectivity, safe and effective probe of targeting Aβ aggregates, X6 is a promising NIRF probe for in vivo detection of Aβ aggregates in the AD brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2024.107514DOI Listing

Publication Analysis

Top Keywords

aβ aggregates
28
nirf probe
8
alzheimer's disease
8
nirf imaging
8
hemicyanine structure
8
aggregates brain
8
optical properties
8
7
aggregates
7
nirf
5

Similar Publications

ClpB, a bacterial homologue of heat shock protein 104 (Hsp104), can disentangle aggregated proteins with the help of the DnaK, a bacterial Hsp70, and its co-factors. As a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA), ClpB forms a hexameric ring structure, with each protomer containing two AAA modules, AAA1 and AAA2. A long coiled-coil middle domain (MD) is present in the C-terminal region of the AAA1 and surrounds the main body of the ring.

View Article and Find Full Text PDF

Structural determinants for protein unfolding and translocation by the Hsp104 protein disaggregase.

Biosci Rep

December 2017

Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, U.S.A.

Article Synopsis
  • *Key to Hsp104's function are specific amino acid loops in its ATP-binding domains that play crucial roles in substrate translocation and interaction.
  • *Research shows that both flanking aliphatic residues and loop-2 are vital for Hsp104's activity; mutations can significantly impair its function in disaggregating proteins.
View Article and Find Full Text PDF

Mutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase.

Front Mol Biosci

February 2017

Center for Molecular Biology of the Heidelberg University, German Cancer Research Center Heidelberg, Germany.

The members of the hexameric AAA+ disaggregase of and , ClpB, and Hsp104, cooperate with the Hsp70 chaperone system in the solubilization of aggregated proteins. Aggregate solubilization relies on a substrate threading activity of ClpB/Hsp104 fueled by ATP hydrolysis in both ATPase rings (AAA-1, AAA-2). ClpB/Hsp104 ATPase activity is controlled by the M-domains, which associate to the AAA-1 ring to downregulate ATP hydrolysis.

View Article and Find Full Text PDF

Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.

J Biol Chem

April 2015

From the Department of Biology, Faculty of Science and Engineering and the Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe 658-8501, Japan

Article Synopsis
  • * The chaperone utilizes ATP binding and hydrolysis to generate mechanical force necessary for disaggregating proteins, although the details of its ATPase cycle remain complex and poorly understood across different species.
  • * Research on ordered structures of ClpB from Thermus thermophilus revealed that ATP binding is random initially, but once enough ATP binds to one ring, it activates the other ring for cooperative ATP hydrolysis, which is essential for the protein disaggregation function of ClpB.
View Article and Find Full Text PDF

ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!