Research Question: What is the involvement of pigment epithelium-derived factor (PEDF), expressed in granulosa cells, in folliculogenesis?
Design: mRNA expression of PEDF and other key factors [Cyp19, anti-Müllerian hormone receptor (AMHR) and vascular endothelial growth factor (VEGF)] in mice follicles was examined in order to typify the expression of PEDF in growing follicles and in human primary granulosa cells (hpGC), and to follow the interplay between PEDF and the other main players in folliculogenesis: FSH and AMH.
Results: mRNA expression of PEDF increased through folliculogenesis, although the pattern differed from that of the other examined genes, affecting the follicular angiogenic and oxidative balance. In hpGC, prolonged exposure to FSH stimulated the up-regulation of PEDF mRNA. Furthermore, a negative correlation between AMH and PEDF was observed: AMH stimulation reduced the expression of PEDF mRNA and PEDF stimulation reduced the expression of AMHR mRNA.
Conclusions: Folliculogenesis, an intricate process that requires close dialogue between the oocyte and its supporting granulosa cells, is mediated by various endocrine and paracrine factors. The current findings suggest that PEDF, expressed in granulosa cells, is a pro-folliculogenesis player that interacts with FSH and AMH in the process of follicular growth. However, the mechanism of this process is yet to be determined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rbmo.2024.103981 | DOI Listing |
J Ovarian Res
January 2025
Department of Urology, Zigong Fourth People's Hospital, Zigong, Sichuan, China.
Background: Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear.
View Article and Find Full Text PDFJ Adv Res
January 2025
College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China. Electronic address:
Introduction: Hypoxia, a condition characterized by inadequate oxygen supply to tissues, triggers various cellular responses, including apoptosis. The RNA demethylase FTO has been shown to exert anti-apoptotic effects, but its functions independent of RNA demethylase-particularly those involving protein-protein interactions-during hypoxia remain unclear.
Objectives: This study aimed to elucidate the cytoprotective mechanism of FTO in preventing apoptosis under hypoxic stress.
Reprod Toxicol
January 2025
Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. Electronic address:
Saturated fat has been linked to cardiovascular diseases, leading to an increase in polyunsaturated fat consumption. The aim of the present study was to investigate the effects of three fat sources (coconut oil, lard and soybean oil) on metabolic and reproductive parameters in heterogenic mice. Female Swiss mice (5-6 weeks old; n=9/group) were divided into four experimental groups: control (CC), coconut oil (CO), lard (LA), and soybean oil (SO), and were orally given 0.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
The specific expression profile and function of circular RNA (circRNA) in follicular atresia remain largely unknown. Here, the circRNA expression profiles of granulosa cells derived from healthy follicles (HFs) and antral follicles (AFs) in buffalo were analyzed by RNA-seq, and the mechanism of a differentially expressed circRNA (DEcircRNA) circTEC regulating the granulosa cell function that affects follicular atresia was further explored. RNA-seq results showed that a total of 112 DEcircRNAs were identified.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
Ovarian aging significantly impacts female fertility, with mitochondrial dysfunction emerging as a key factor. This study investigated the effects of recombinant follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on mitochondrial function and metabolism in aging female reproductive cells. Human granulosa cells (HGL5) were treated with FSH/LH or not.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!