Transcriptome response of a marine copepod in response to environmentally-relevant concentrations of saxitoxin.

Mar Pollut Bull

Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361013, China. Electronic address:

Published: August 2024

Paralytic shellfish toxins (PSTs) can pose a serious threat to human health. Among them, saxitoxin (STX) is one of the most potent natural neurotoxins. Here, the copepod Tigriopus japonicus, was exposed to environmentally relevant concentrations (2.5 and 25 μg/L) STX for 48 h. Although no lethal effects were observed at both concentrations, the transcriptome was significantly altered, and displayed a concentration-dependent response. STX exposure decreased the copepod's metabolism and compromised immune defense and detoxification. Additionally, STX disturbed signal transduction, which might affect other cellular processes. STX exposure could inhibit the copepod's chitin metabolism, disrupting its molting process. Also, the processes related to damage repair and protection were up-regulated to fight against high concentration exposure. Collectively, this study has provided an early warning of PSTs for coastal ecosystem not only because of their potent toxicity effect but also their bioaccumulation that can transfer up the food chain after ingestion by copepods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2024.116546DOI Listing

Publication Analysis

Top Keywords

stx exposure
8
stx
5
transcriptome response
4
response marine
4
marine copepod
4
copepod response
4
response environmentally-relevant
4
environmentally-relevant concentrations
4
concentrations saxitoxin
4
saxitoxin paralytic
4

Similar Publications

In July 2022, a genetically linked and geographically dispersed cluster of 12 cases of Shiga toxin-producing (STEC) O103:H2 was detected by the UK Health Security Agency using whole genome sequencing. Review of food history questionnaires identified cheese (particularly an unpasteurized brie-style cheese) and mixed salad leaves as potential vehicles. A case-control study was conducted to investigate exposure to these products.

View Article and Find Full Text PDF

The consumption of bivalves contaminated with paralytic shellfish toxins (PSTs) poses a serious risk to human health. However, the presence of PSTs in bivalves from the South Yellow Sea Mudflat remains unclear. This study comprehensively examined the characteristics and potential health risks of PSTs in eight species of bivalves from the South Yellow Sea Mudflat across four seasons.

View Article and Find Full Text PDF

Saxitoxin (STX) is a potent neurotoxin naturally produced by dinoflagellates and cyanobacteria. STX inhibits voltage-gated sodium channels (VGSCs), affecting the propagation of action potentials. Consumption of seafood contaminated with STX is responsible for paralytic shellfish poisoning (PSP).

View Article and Find Full Text PDF

The Zika virus (ZIKV) epidemic declared in Brazil between 2015 and 2016 was associated with an increased prevalence of severe congenital malformations, including microcephaly. The distribution of microcephaly cases was not uniform across the country, with a disproportionately higher incidence in the Northeast region (NE). Our previous work demonstrated that saxitoxin (STX), a toxin present in the drinking water reservoirs of the NE, exacerbated the damaging effects of ZIKV on the developing brain.

View Article and Find Full Text PDF

Harmful algal blooms (HABs) - proliferated algae densities, often producing toxins - have increasingly been found in ocean and coastal areas. Recent studies show that rising temperatures contribute to HAB occurrence, but the broader influence of climate change on these outbreaks is less quantified. Of particular concern is the limited research on HAB toxin effects under varying temperatures, especially regarding primary consumers such as copepods, a crucial component of aquatic ecosystems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!