A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Central Metal-Triggered Structural Transformation of a 2D Layered MOF: Mechanistic Studies and Applications. | LitMetric

The structural transformation of metal-organic frameworks (MOFs) has attracted increasing interests, which has not only produced various new structures but also served as a fantastic platform for MOF-based kinetic analysis. Multiple reaction conditions have been documented to cause structural transformation; nevertheless, central metal-induced topological alteration of MOFs is rare. Herein, we reported a structural transformation of a 2D layered Cd-MOF driven by Cd(II) ions. After being submerged in the aqueous solution of cadmium nitrate, the twofold interpenetrated 2D network of [Cd(hsb-2)(bdc)·5HO] [HSB-W10; bdc: 1,4-benzenedicarboxylate; hsb-2:1,2-bis(4'-pyridylmethylamino)-ethane] was converted into a novel noninterpenetrated 2D network [Cd(hsb-2)(bdc)(HO)·HO] (HSB-W16). This partial dissolution-recrystallization process was investigated by integrating controlled experiments, H NMR spectra, and photographic tracking analysis. Furthermore, a novel strategy combining in situ multicomponent dye encapsulation and central metal-triggered structural transformation was developed for the fabrication of MOF materials with white-light emission. By adopting this strategy, different dye guest molecules were concurrently introduced into the HSB-W16 host matrix, leading to a range of white-light-emitting MOF composites. This work will enable detailed studies of solid-state transformations and demonstrate a promising application prospect for structural transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c01885DOI Listing

Publication Analysis

Top Keywords

structural transformation
24
central metal-triggered
8
metal-triggered structural
8
transformation layered
8
structural
6
transformation
6
layered mof
4
mof mechanistic
4
mechanistic studies
4
studies applications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!