The attentive reconstruction of objects facilitates robust object recognition.

PLoS Comput Biol

Department of Psychology, Stony Brook University, Stony Brook, New York, United States of America.

Published: June 2024

Humans are extremely robust in our ability to perceive and recognize objects-we see faces in tea stains and can recognize friends on dark streets. Yet, neurocomputational models of primate object recognition have focused on the initial feed-forward pass of processing through the ventral stream and less on the top-down feedback that likely underlies robust object perception and recognition. Aligned with the generative approach, we propose that the visual system actively facilitates recognition by reconstructing the object hypothesized to be in the image. Top-down attention then uses this reconstruction as a template to bias feedforward processing to align with the most plausible object hypothesis. Building on auto-encoder neural networks, our model makes detailed hypotheses about the appearance and location of the candidate objects in the image by reconstructing a complete object representation from potentially incomplete visual input due to noise and occlusion. The model then leverages the best object reconstruction, measured by reconstruction error, to direct the bottom-up process of selectively routing low-level features, a top-down biasing that captures a core function of attention. We evaluated our model using the MNIST-C (handwritten digits under corruptions) and ImageNet-C (real-world objects under corruptions) datasets. Not only did our model achieve superior performance on these challenging tasks designed to approximate real-world noise and occlusion viewing conditions, but also better accounted for human behavioral reaction times and error patterns than a standard feedforward Convolutional Neural Network. Our model suggests that a complete understanding of object perception and recognition requires integrating top-down and attention feedback, which we propose is an object reconstruction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175536PMC
http://dx.doi.org/10.1371/journal.pcbi.1012159DOI Listing

Publication Analysis

Top Keywords

object
9
robust object
8
object recognition
8
object perception
8
perception recognition
8
top-down attention
8
noise occlusion
8
object reconstruction
8
recognition
5
model
5

Similar Publications

Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.

View Article and Find Full Text PDF

In this paper, the Hefei metropolitan area is selected as the research object to measure industrial carbon emissions in this area during 2010-2022. The main contribution is to deeply analyze the characteristics of the spatial correlation network of industrial carbon emissions in the Hefei metropolitan area with the modified gravity model and social network analysis(SNA), and to explore the driving factors of its formation with quadratic assignment procedure(QAP). It establishes the foundation for the Hefei metropolitan area to differentiated green city development policies.

View Article and Find Full Text PDF

To address the challenges of high computational complexity and poor real-time performance in binocular vision-based Unmanned Aerial Vehicle (UAV) formation flight, this paper introduces a UAV localization algorithm based on a lightweight object detection model. Firstly, we optimized the YOLOv5s model using lightweight design principles, resulting in Yolo-SGN. This model achieves a 65.

View Article and Find Full Text PDF

Relationship between functional structures and horizontal connections in macaque inferior temporal cortex.

Sci Rep

January 2025

Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.

Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity.

View Article and Find Full Text PDF

The takeover issue, especially the setting of the takeover time budget, is a critical factor restricting the implementation and development of conditionally automated vehicles. The general fixed takeover time budget has certain limitations, as it does not take into account the driver's non-driving behaviors. Here, we propose an intelligent takeover assistance system consisting of all-round sensing gloves, a non-driving behavior identification module, and a takeover time budget determination module.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!