Wnt/Wingless (Wg) signaling is critical in development and disease, including cancer. Canonical Wnt signaling is mediated by β-catenin/Armadillo (Arm in Drosophila) transducing signals to the nucleus, with IFT-A/Kinesin 2 complexes promoting nuclear translocation of β-catenin/Arm. Here, we demonstrate that a conserved small N-terminal Arm/β-catenin peptide binds to IFT140, acting as a dominant interference tool to attenuate Wg/Wnt signaling in vivo. Arm expression antagonizes endogenous Wnt/Wg signaling, resulting in the reduction of its target expression. Arm inhibits Wg/Wnt signaling by interfering with nuclear translocation of endogenous Arm/β-catenin, and this can be modulated by levels of wild-type β-catenin or IFT140, with the Arm effect being enhanced or suppressed. Importantly, this mechanism is conserved in mammals with the equivalent β-catenin peptide blocking nuclear translocation and pathway activation, including in cancer cells. Our work indicates that Wnt signaling can be regulated by a defined N-terminal β-catenin peptide and thus might serve as an entry point for therapeutic applications to attenuate Wnt/β-catenin signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311196 | PMC |
http://dx.doi.org/10.1016/j.celrep.2024.114362 | DOI Listing |
Breast Cancer Res
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
Background: CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Endocrinology, Central South University Third Xiangya Hospital, Changsha, China.
Pancreatic β-cell damage is a critical pathological mechanism in the progression of obese type 2 diabetes mellitus (T2DM). However, the exact underlying mechanism remains unclear. We established an obese T2DM mouse model via high-fat diet feeding.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China.
The intricate link between cholesterol metabolism and host immune responses is well recognized, but the specific mechanisms by which cholesterol biosynthesis influences hepatitis B virus (HBV) replication remain unclear. In this study, we show that SREBP2, a key regulator of cholesterol metabolism, inhibits HBV replication by interacting directly with the HBx protein, thereby preventing its nuclear translocation. We also found that inhibiting the ER-to-Golgi transport of the SCAP-SREBP2 complex or blocking SREBP2 maturation significantly enhances HBV suppression.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC, Zhejiang University, Hangzhou 310058, China.
Decabromodiphenyl ethane (DBDPE), a key alternative to deca-BDE (BDE-209), has been ubiquitous in the receiving ecosystem. However, little is known about its uptake process and fate in plants. Here, the plant absorption, distribution, and metabolism of C-DBDPE under two distinct exposure pathways (i.
View Article and Find Full Text PDFInt J Gynecol Pathol
January 2025
Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California.
Uterine tumor resembling ovarian sex cord tumor (UTROSCT) is a rare, typically benign uterine tumor occurring over a wide age range (mean 52.4 yr). UTROSCTs often harbor translocations between ESR1 and nuclear receptor coactivators NCOA1-NCOA3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!