To obtain high-quality positron emission tomography (PET) images while minimizing radiation exposure, numerous methods have been dedicated to acquiring standard-count PET (SPET) from low-count PET (LPET). However, current methods have failed to take full advantage of the different emphasized information from multiple domains, i.e., the sinogram, image, and frequency domains, resulting in the loss of crucial details. Meanwhile, they overlook the unique inner-structure of the sinograms, thereby failing to fully capture its structural characteristics and relationships. To alleviate these problems, in this paper, we proposed a prior knowledge-guided transformer-GAN that unites triple domains of sinogram, image, and frequency to directly reconstruct SPET images from LPET sinograms, namely PK-TriDo. Our PK-TriDo consists of a Sinogram Inner-Structure-based Denoising Transformer (SISD-Former) to denoise the input LPET sinogram, a Frequency-adapted Image Reconstruction Transformer (FaIR-Former) to reconstruct high-quality SPET images from the denoised sinograms guided by the image domain prior knowledge, and an Adversarial Network (AdvNet) to further enhance the reconstruction quality via adversarial training. Specifically tailored for the PET imaging mechanism, we injected a sinogram embedding module that partitions the sinograms by rows and columns to obtain 1D sequences of angles and distances to faithfully preserve the inner-structure of the sinograms. Moreover, to mitigate high-frequency distortions and enhance reconstruction details, we integrated global-local frequency parsers (GLFPs) into FaIR-Former to calibrate the distributions and proportions of different frequency bands, thus compelling the network to preserve high-frequency details. Evaluations on three datasets with different dose levels and imaging scenarios demonstrated that our PK-TriDo outperforms the state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2024.3413832DOI Listing

Publication Analysis

Top Keywords

prior knowledge-guided
8
domains sinogram
8
sinogram image
8
image frequency
8
inner-structure sinograms
8
spet images
8
enhance reconstruction
8
sinograms
6
pet
5
sinogram
5

Similar Publications

: Metabolomics measurements are noisy, often characterized by a small sample size and missing entries. While data-driven methods have shown promise in terms of analyzing metabolomics data, e.g.

View Article and Find Full Text PDF

Background: People with Alzheimer's disease (AD) exhibit varying clinical trajectories. There is a need to predict future AD-related outcomes such as morbidity and mortality using clinical profile at the point of care.

Objective: To stratify AD patients based on baseline clinical profiles (up to two years prior to AD diagnosis) and update the model after AD diagnosis to prognosticate future AD-related outcomes.

View Article and Find Full Text PDF

One of the key points in the construction of smart oil and gas fields is the effective utilization of data. Virtual Flow Metering (VFM), as one of the representative research directions for digital transformation, can obtain real-time production from oil and gas wells without the need for additional field instrumentation, utilizing pressure and temperature data obtained from sensors and employing multiphase flow mechanism models. The data-driven VFM demonstrates a commendable capacity in capturing the nonlinear relationship between sensor data and flow rates, while circumventing the necessity for rigorous analysis of the underlying mechanistic processes.

View Article and Find Full Text PDF

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

Unified Knowledge-Guided Molecular Graph Encoder with multimodal fusion and multi-task learning.

Neural Netw

December 2024

School of Computer Science, Wuhan University, Luojiashan Road, Wuchang District., Wuhan, 430072, Hubei Province, China; Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, No. 8, Yangqiaohu Avenue, Zanglong Island Development Zone, Jiangxia District, Wuhan, 2007, Hubei Province, China. Electronic address:

The remarkable success of Graph Neural Networks underscores their formidable capacity to assimilate multimodal inputs, markedly enhancing performance across a broad spectrum of domains. In the context of molecular modeling, considerable efforts have been made to enrich molecular representations by integrating data from diverse aspects. Nevertheless, current methodologies frequently compartmentalize geometric and semantic components, resulting in a fragmented approach that impairs the holistic integration of molecular attributes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!