Within the prefrontal-cingulate cortex, abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions, contributing to the development of mental disorders such as depression. Despite this understanding, the neural circuit mechanisms underlying this phenomenon remain elusive. In this study, we present a biophysical computational model encompassing three crucial regions, including the dorsolateral prefrontal cortex, subgenual anterior cingulate cortex, and ventromedial prefrontal cortex. The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes. The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks. Furthermore, our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex, and network functionality was restored through intervention in the dorsolateral prefrontal cortex. This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748675 | PMC |
http://dx.doi.org/10.1007/s12264-024-01246-7 | DOI Listing |
Neurosci Bull
January 2025
Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, 071000, China.
Within the prefrontal-cingulate cortex, abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions, contributing to the development of mental disorders such as depression. Despite this understanding, the neural circuit mechanisms underlying this phenomenon remain elusive. In this study, we present a biophysical computational model encompassing three crucial regions, including the dorsolateral prefrontal cortex, subgenual anterior cingulate cortex, and ventromedial prefrontal cortex.
View Article and Find Full Text PDFA persistent and influential barrier to effective cognitive-behavioral therapy (CBT) for patients with hoarding disorder (HD) is treatment retention and compliance. Recent research has suggested that HD patients have abnormal brain activity identified by functional magnetic resonance (fMRI) in regions often engaged for executive functioning (e.g.
View Article and Find Full Text PDFNeuropsychopharmacology
February 2024
Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
Posttraumatic stress disorder (PTSD) is associated with lower cortical thickness (CT) in prefrontal, cingulate, and insular cortices in diverse trauma-affected samples. However, some studies have failed to detect differences between PTSD patients and healthy controls or reported that PTSD is associated with greater CT. Using data-driven dimensionality reduction, we sought to conduct a well-powered study to identify vulnerable networks without regard to neuroanatomic boundaries.
View Article and Find Full Text PDFAndrology
May 2024
Department of Andrology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Introduction: The prefrontal-cingulate-thalamic areas are associated with ejaculation control. Functional abnormalities of these areas and decreased grey matter volume (GMV) in the subcortical areas have been confirmed in premature ejaculation (PE) patients. However, no study has explored the corresponding GMV changes in the prefrontal-cingulate-thalamic areas, which are considered as the important basis for functional abnormalities.
View Article and Find Full Text PDFBiol Res Nurs
January 2024
School of Nursing, University of Wisconsin-Madison, Madison, WI, USA.
Up to 1 in 3 youth in the United States have a childhood-onset chronic health condition (CHC), which can lead to neurodevelopmental disruptions in cognitive functioning and brain structure. However, the nature and extent of structural neurobiomarkers that may be consistent across a broad spectrum of CHCs are unknown. Thus, the purpose of this study was to identify potential differences in brain structure in youth with and without chronic physical health conditions (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!