Copper-filled vertically aligned carbon nanotubes (Cu@VACNTs) were grown directly on Cu foil substrates of 0.1 mm thicknesses at different temperatures via plasma-enhanced chemical vapor deposition (PECVD). By circumventing the need for additional catalyst layers or intensive substrate treatments, our in-situ technique offers a simplified and potentially scalable route for fabricating Cu@VACNTs with enhanced electrical and thermal properties on thin Cu foils. Comprehensive analysis using field emission scanning microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) mappings, and X-ray diffraction (XRD) revealed uniform Cu filling within the VACNTs across a range of synthesis temperatures (650 °C, 700 °C, and 760 °C). Field emission (FE) measurements of the sample synthesized at 700 °C (S700) showed low turn-on and threshold fields of 2.33 V/μm and 3.29 V/μm, respectively. The findings demonstrate the viability of thin Cu substrates in creating dense and highly conductive Cu-filled VACNT arrays for advanced electronic and nanoelectronics applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174008PMC
http://dx.doi.org/10.3390/nano14110988DOI Listing

Publication Analysis

Top Keywords

field emission
12
vertically aligned
8
aligned carbon
8
carbon nanotubes
8
grown directly
8
thin foils
8
700 °c
8
emission properties
4
properties cu-filled
4
cu-filled vertically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!