MOF-Enhanced Aluminosilicate Ceramic Membranes Using Non-Firing Processes for Pesticide Filtration and Phytochrome Removal.

Nanomaterials (Basel)

Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

Published: May 2024

Aluminosilicates, abundant and crucial in both natural environments and industry, often involve uncontrollable chemical components when derived from minerals, making further chemical purification and reaction more complicated. This study utilizes pure alumina and fumed silica powders as more controllable sources, enhancing aluminosilicate reactivity through room temperature (non-firing) processing and providing a robust framework that resists mechanical stress and high temperature. By embedding iron-based metal-organic frameworks (Fe-MOF/non-firing aluminosilicate membranes) within the above matrix, these ceramic membranes not only preserve their mechanical robustness but also gain significant chemical functionality, enhancing their capacity to removing phytochromes from the vegetables. Sodium hydroxide and sodium silicate were selected as activators to successfully prepare high-strength, non-firing aluminosilicate membranes. These membranes demonstrated a flexural strength of 8.7 MPa under wet-culture conditions with a molar ratio of AlO:SiO:NaOH:NaSiO at 1:1:0.49:0.16. The chlorophyll adsorption of spinach conducted on these membranes showed a removal rate exceeding 90% at room temperature and pH = 9, highlighting its potential for the selective adsorption of chlorophyll. This study underscores the potential of MOF-enhanced aluminosilicate ceramic membranes in environmental applications, particularly for agricultural pollution control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173857PMC
http://dx.doi.org/10.3390/nano14110944DOI Listing

Publication Analysis

Top Keywords

ceramic membranes
12
mof-enhanced aluminosilicate
8
aluminosilicate ceramic
8
room temperature
8
aluminosilicate membranes
8
membranes
7
membranes non-firing
4
non-firing processes
4
processes pesticide
4
pesticide filtration
4

Similar Publications

: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.

View Article and Find Full Text PDF

Optimizing Nanobubble Production in Ceramic Membranes: Effects of Pore Size, Surface Hydrophobicity, and Flow Conditions on Bubble Characteristics and Oxygenation.

Langmuir

January 2025

John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.

Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.

View Article and Find Full Text PDF

Design of RuO Electrocatalysts Containing Metallic Ru on the Surface to Accelerate the Alkaline Hydrogen Evolution Reaction.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

The development of water splitting technology in alkaline medium requires the exploration of electrocatalysts superior to Pt/C to boost the alkaline hydrogen evolution reaction (HER). Ruthenium oxides with strong water dissociation ability are promising candidates; however, the lack of hydrogen combination sites immensely limits their performance. Herein, we reported a unique RuO catalyst with metallic Ru on its surface through a simple cation exchange method.

View Article and Find Full Text PDF

The rapid expansion of the cosmetics industry has significantly increased the adoption of alternative microplastics in response to increasingly stringent global environmental regulations. This study presents a comparative analysis of the treatment performance of silica powder and cornstarch-common alternatives for microplastics in cosmetics-using ceramic membrane filtration combined with flow imaging microscopy (FlowCam) to analyze particle behavior. Bench-scale crossflow filtration experiments were performed with commercially available alumina ceramic membranes.

View Article and Find Full Text PDF

The Role of Membranes in Modern Winemaking: From Clarification to Dealcoholization.

Membranes (Basel)

January 2025

Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), 3013 Taufik Germano Rd., University II DC, Cachoeira do Sul 96503-205, RS, Brazil.

The utilization of membrane technologies in winemaking has revolutionized various stages of production, offering precise and efficient alternatives to traditional methods. Membranes, characterized by their selective permeability, play a pivotal role in enhancing wine quality across multiple processes. In clarification, microfiltration and ultrafiltration membranes, such as ceramic or polymeric membranes (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!