Can H be Superacidic? A Computational Study of Triel-Bonded Brønsted Acids.

J Phys Chem A

Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland.

Published: June 2024

The abundance of XIII group element compounds in science and industry together with their electron-deficient character gives rise to their influence on properties of the systems they interact with. This paper is an attempt to assess the strength, nature, and effect of formation of a triel bond on acidity. A wide set of Brønsted acids among others comprising hydrocarbons, halogen hydrides, and amines bonded with B, Al, and Ga trifluorides forming HX/TF was selected for the research. Various computational approaches (e.g., MP2, GFN2-xTB, SAPT2 + 3(CCD)δ, quantum theory of atoms in molecules analysis, and density overlap regions indicator) are used to describe the triel-bonded systems. Among other things, it was found that the electrostatics may not be the dominant contribution to the triel binding in some cases. Additionally, it was established that even weak Brønsted acids such as CH or H may be superacidic if bonded to a Lewis acid (TF) that is strong enough. The calculations indicate a significant covalent character of some of the studied HX/TF triel-bonded systems. Moreover, the effect of solvation of HX with TF as well as that of the reverse process on the acidity of the resulting system is thoroughly described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11215784PMC
http://dx.doi.org/10.1021/acs.jpca.4c02663DOI Listing

Publication Analysis

Top Keywords

brønsted acids
12
triel-bonded systems
8
superacidic? computational
4
computational study
4
study triel-bonded
4
triel-bonded brønsted
4
acids abundance
4
abundance xiii
4
xiii group
4
group element
4

Similar Publications

A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20 and RR4-56, NNCM2, P31 and X9-2-2 were 98.9, 91.

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Calprotectin's Protein Structure Shields Ni-N(His) Bonds from Competing Agents.

J Phys Chem Lett

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

The Ni-N(His) coordination bond, formed between the nickel ion and histidine residues, is essential for recombinant protein purification, especially in Ni-NTA-based systems for selectively binding polyhistidine-tagged (Histag) proteins. While previous studies have explored its bond strength in a synthetic Ni-NTA-Histag system, the influence of the surrounding protein structure remains less understood. In this study, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to quantify the Ni-N(His) bond strength in calprotectin, a biologically relevant protein system.

View Article and Find Full Text PDF

A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.

View Article and Find Full Text PDF

Background And Aims: Hepatitis B virus (HBV) is prevalent worldwide and is difficult to eradicate. Current treatment strategies for chronic hepatitis B ultimately seek to achieve functional cure (FC); however, the factors contributing to FC remain unclear. We aimed to investigate the gut microbiota profiles of patients with chronic hepatitis B who achieved FC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!