monitoring of HO in cellular microenvironments plays a critical role in the early diagnosis and pretreatment of cancer, but is limited by the lack of efficient and low-cost strategies for the large-scale preparation of real-time biosensors. Herein, a universal strategy for MXene-based composite inks combined with a scalable screen-printing process is validated in large-scale manufacturing of electrochemical biosensors for detection of HO secreted from live cells. Compositing biocompatible carboxymethyl cellulose (CMCS) with excellent conductive MXene, a water-based ink electrode (MXene/CMCS) with tunable viscosity is efficiently printed with desirable printing accuracy. Subsequently, the MXene/CMCS@HRP electrochemical biosensor exhibits stable electrochemical performance through HRP nanoflower modification, showing rapid electron transport and high electrocatalytic capacity, and demonstrating a low limit of detection (0.29 μM) with a wide linear detection range (0.5 μM-3 mM), superior sensitivity (56.45 μA mM cm), long-term stability and high anti-interference ability. Moreover, this electrochemical biosensor is effectively employed for detection of HO secreted from HeLa cells, revealing good biocompatibility and outstanding biosensing capability. This proposed strategy not only extends the possibility of low-cost biomedical devices, but also provides a promising approach for early diagnosis and treatment of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr01328j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!