Diabetic encephalopathy (DE) is a severe complication of the central nervous system associated with diabetes. In this study, we investigated the regulatory role of mammalian target of rapamycin (mTOR) on nuclear factor κB (NF-κB) in mice with DE, and the neuroprotective effect and therapeutic mechanisms of luteolin, a natural flavonoid compound with anti-inflammatory, antioxidant, and neuroprotective properties. The results indicated that treatment with luteolin improved the degree of cognitive impairment in mice with DE. It also decreased the levels of phosphorylated mTOR, phosphorylated NF-κB, and histone deacetylase 2 (HDAC2) and increased the expression of brain-derived neurotrophic factor and synaptic-related proteins. Furthermore, protein-protein interaction and the Gene Ontology analysis revealed that luteolin was involved in the regulatory network of HDAC2 expression through the mTOR/NF-κB signaling cascade. Our bioinformatics and molecular docking results indicated that luteolin may also directly target HDAC2, as an HDAC2 inhibitor, to alleviate DE, complementing mTOR/NF-κB signaling inhibition. Analysis of luteolin's target proteins and their interactions suggest an effect on HDAC2 and cognition. In conclusion, HDAC2 and tau hyperphosphorylation are regulated by the mTOR/NF-κB signaling cascade in DE, and luteolin is found to reverse these effects, demonstrating its protective role in DE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/db23-0969 | DOI Listing |
Chem Biodivers
January 2025
Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh.
Hinokitiol (HK), a monoterpenoid that naturally occurs in plants belonging to the Cupressaceae family, possesses important biological activities, including an anticancer effect. This review summarizes its anticancer potential and draws possible molecular interventions. In addition, it evaluates the biopharmaceutical, toxicological properties, and clinical application of HK to establish its viability for future advancement as a dependable anticancer medication.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
Objective: Nuclear transcription factor-κB (NF-κB) activation is a pivotal event in the pathogenesis of osteoarthritis (OA). OA patients frequently exhibit vitamin D (VD) deficiency, which is commonly associated with NF-κB activation. Our study aimed to investigate whether VD could protect against OA by modulating NF-κB pathway and to explore the underlying mechanisms.
View Article and Find Full Text PDFDiagn Pathol
January 2025
Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, Prague, 12800, Czech Republic.
Background: Juvenile granulosa cell tumor (JGCT) of the ovary is a rare tumor with distinct clinicopathological and hormonal features primarily affecting young women and children. We conducted a complex clinicopathological, immunohistochemical, and molecular analysis of five cases of JGCT.
Methods: The immunohistochemical examination was performed with 32 markers, including markers that have not been previously investigated.
Anticancer Agents Med Chem
January 2025
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
Long non-coding RNA (lncRNA) is a type of non-coding RNA distinguished by a length exceeding 200 nucleotides. Recent studies indicated that lncRNAs participate in various biological processes, such as chromatin remodeling, transcriptional and post-transcriptional regulation, and the modulation of cell proliferation, death, and differentiation, hence influencing gene expression and cellular function. ADAMTS9-AS1, an antisense long non-coding RNA situated on human chromosome 3p14.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
January 2025
Department of Pharmacy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP)-244001, India.
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social communication deficits and repetitive behaviors. Emerging evidence highlights the significant role of glial cells, particularly astrocytes and microglia, in the pathophysiology of ASD. Glial cells are crucial for maintaining homeostasis, modulating synaptic function, and responding to neural injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!