Unlabelled: Enterovirus D68 (EV-D68) is an emerging pathogen that can cause severe respiratory and neurologic disease [acute flaccid myelitis (AFM)]. Intramuscular (IM) injection of neonatal Swiss Webster (SW) mice with US/IL/14-18952 (IL52), a clinical isolate from the 2014 EV-D68 epidemic, results in many of the pathogenic features of human AFM, including viral infection of the spinal cord, death of motor neurons, and resultant progressive paralysis. In distinction, CA/14-4231 (CA4231), another clinical isolate from the 2014 EV-D68 outbreak, does not cause paralysis in mice, does not grow in the spinal cord, and does not cause motor neuron loss following IM injection. A panel of chimeric viruses containing sequences from IL52 and CA4231 was used to demonstrate that VP1 is the main determinant of EV-D68 neurovirulence following IM injection of neonatal SW mice. VP1 contains four amino acid differences between IL52 and CA4231. Mutations resulting in substituting these four amino acids (CA4231 residues into the IL52 polyprotein) completely abolished neurovirulence. Conversely, mutations resulting in substituting VP1 IL52 amino acid residues into the CA4231 polyprotein created a virus that induced paralysis to the same degree as IL52. Neurovirulence following infection of neonatal SW mice with parental and chimeric viruses was associated with viral growth in the spinal cord.

Importance: Emerging viruses allow us to investigate mutations leading to increased disease severity. Enterovirus D68 (EV-D68), once the cause of rare cases of respiratory illness, recently acquired the ability to cause severe respiratory and neurologic disease. Chimeric viruses were used to demonstrate that viral structural protein VP1 determines growth in the spinal cord, motor neuron loss, and paralysis following intramuscular (IM) injection of neonatal Swiss Webster (SW) mice with EV-D68. These results have relevance for predicting the clinical outcome of future EV-D68 epidemics as well as targeting retrograde transport as a potential strategy for treating virus-induced neurologic disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264684PMC
http://dx.doi.org/10.1128/jvi.00397-24DOI Listing

Publication Analysis

Top Keywords

enterovirus d68
12
neurologic disease
12
injection neonatal
12
spinal cord
12
chimeric viruses
12
flaccid myelitis
8
d68 ev-d68
8
severe respiratory
8
respiratory neurologic
8
intramuscular injection
8

Similar Publications

Enteroviruses (EV) are a highly diverse group of viruses multiplying primarily in the gastrointestinal tract and/or the upper respiratory tract, initially distributed in two separate genera: Enterovirus and Rhinovirus, respectively. According to the similarities in genome organization and particle structure, rhinovirus species were later reclassified as also belonging to genus Enterovirus. Human EV infections are usually asymptomatic or causing mild clinical manifestations.

View Article and Find Full Text PDF

Background: Rhinoviruses are known as the leading pathogens of respiratory diseases. Determining the prevalence and phylogeny of rhinoviruses plays a pivotal role in producing vaccines and medications and preventing virus complications. This study investigated the frequency, and genetic variation of rhinoviruses detected in patients referred to Masih Daneshvari Hospital.

View Article and Find Full Text PDF

Emerging Therapeutics in the Fight Against EV-D68: A Review of Current Strategies.

Influenza Other Respir Viruses

December 2024

Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.

Enterovirus-D68 (EV-D68) was first identified in 1962 in pediatric patients with acute respiratory conditions in California, USA (US). From the 1970s to 2005, EV-D68 was underestimated due to limited data and serotyping methods. In 2014, the United States experienced outbreaks of acute flaccid myelitis (AFM) in children EV-D68 positive.

View Article and Find Full Text PDF

A Systematic Review on the Antimicrobial Activity of Andrographolide.

J Microbiol Biotechnol

November 2024

Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia.

Andrographolide, a bioactive compound from Andrographis paniculata, has gained attention for its antimicrobial properties, which include antibacterial, antiviral, antifungal, and antiprotozoal effects. As an herbal extract used in traditional medicines, andrographolide also shows promise for developing new antimicrobial agents, especially in the fight against rising antimicrobial resistance. Following the PRISMA 2020 guidelines, 16 peer-reviewed studies published from 2010 to 2024 and focusing on andrographolide's effects on bacteria, viruses, fungi, and protozoa were reviewed.

View Article and Find Full Text PDF

Mitophagosomes induced during EV-D68 infection promote viral nonlytic release.

bioRxiv

December 2024

Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, 685 W. Baltimore Avenue, Baltimore, MD 21201, USA.

Enterovirus-D68 (EV-D68) is a plus-strand RNA virus that primarily causes infant respiratory infections. In rare pediatric cases, infection with EV-D68 has been associated with acute flaccid myelitis, a polio-like paralytic disease. We have previously demonstrated that EV-D68 induces nonselective autophagy for its benefit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!