We have recently discovered that the so-called subcortical maternal complex (SCMC) proteins composing of cytoplasmic lattices are destabilized in Uhrf1 knockout murine fully grown oocytes (FGOs). Here we report that human UHRF1 interacts with human NLRP5 and OOEP, which are core components of the SCMC. Moreover, NLRP5 and OOEP interact with DPPA3, which is an essential factor for exporting UHRF1 from the nucleus to the cytoplasm in oocytes. We identify that NLRP5, not OOEP, stabilizes UHRF1 protein in the cytoplasm utilizing specifically engineered cell lines mimicking UHRF1 status in oocytes and preimplantation embryos. Further, UHRF1 is destabilized both in the cytoplasm and nucleus of Nlrp5 knockout murine FGOs. Since pathogenic variants of the SCMC components frequently cause multilocus imprinting disturbance and UHRF1 is essential for maintaining CpG methylation of imprinting control regions during preimplantation development, our results suggest possible pathogenesis behind the disease, which has been a long-standing mystery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373322 | PMC |
http://dx.doi.org/10.1093/hmg/ddae096 | DOI Listing |
Nat Struct Mol Biol
November 2024
Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
Mol Hum Reprod
September 2024
Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China.
The subcortical maternal complex (SCMC), which is vital in oocyte maturation and embryogenesis, consists of core proteins (NLRP5, TLE6, OOEP), non-core proteins (PADI6, KHDC3L, NLRP2, NLRP7), and other unknown proteins that are encoded by maternal effect genes. Some variants of SCMC genes have been linked to female infertility characterized by embryonic development arrest. However, so far, the candidate non-core SCMC components associated with embryonic development need further exploration and the pathogenic variants that have been identified are still limited.
View Article and Find Full Text PDFHum Mol Genet
September 2024
Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan.
We have recently discovered that the so-called subcortical maternal complex (SCMC) proteins composing of cytoplasmic lattices are destabilized in Uhrf1 knockout murine fully grown oocytes (FGOs). Here we report that human UHRF1 interacts with human NLRP5 and OOEP, which are core components of the SCMC. Moreover, NLRP5 and OOEP interact with DPPA3, which is an essential factor for exporting UHRF1 from the nucleus to the cytoplasm in oocytes.
View Article and Find Full Text PDFGenet Mol Biol
December 2023
Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.
The Subcortical Maternal Complex (SCMC) is composed of maternally encoded proteins required for the early stages of embryo development. Here we aimed to investigate the expression profile of the genes that encode the individual members of the SCMC in human reproductive failures. To accomplish that, we selected three datasets in the Gene Expression Omnibus repository for differential gene expression (DGE) analysis, comprising human endometrial and placental tissues of patients with recurrent implantation failure (RIF) or recurrent pregnancy loss (RPL).
View Article and Find Full Text PDFJ Mol Med (Berl)
June 2023
State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China.
Successful human reproduction requires normal oocyte maturation, fertilization, and early embryo development. Early embryo arrest is a common phenomenon leading to female infertility, but the genetic basis is largely unknown. NLR family pyrin domain-containing 7 (NLRP7) is a member of the NLRP subfamily.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!