Measuring the Shape, Stiffness, and Interface Tension of Droplets with the Scanning Ion Conductance Microscope.

ACS Nano

Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, Tübingen, Tübingen 72076, Germany.

Published: June 2024

Imaging and probing liquid-liquid interfaces at the micro- and nanoscale are of high relevance, for example, in materials science, surface chemistry, and microfluidics. However, existing imaging techniques are limited in resolution, average over large sample areas, or interact with the sample. Here, we present a method to quantify the shape, stiffness, and interface tension of liquid droplets with the scanning ion conductance microscope (SICM), providing submicrometer resolution and the ability to perform noncontact mechanical measurements. We show that we can accurately image the three-dimensional shape of micrometer-sized liquid droplets made of, for example, decane, hexane, or different oils. We then introduce numerical models to quantitatively obtain their stiffness and interface tension from SICM data. We verified our method by measuring the interface tension of decane droplets changing under the influence of surfactants at different concentrations. Finally, we use SICM to resolve the dissolution dynamics of decane droplets, showing that droplet shape exhibits different dissolution modes and stiffness continuously increases while the interface tension remains constant. We thereby demonstrate that SICM is a useful method to investigate liquid-liquid interfaces on the microscale with applications in materials or life sciences.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c02743DOI Listing

Publication Analysis

Top Keywords

interface tension
20
stiffness interface
12
shape stiffness
8
droplets scanning
8
scanning ion
8
ion conductance
8
conductance microscope
8
liquid-liquid interfaces
8
liquid droplets
8
decane droplets
8

Similar Publications

Drug Delivery Applications of Hydrophobic Deep Eutectic Solvent-in-Water Nanoemulsions: A Comparative Analysis of Ultrasound Emulsification and Membrane-Assisted Nanoemulsification.

ACS Appl Mater Interfaces

January 2025

Department of Chemical Engineering and Environmental Technology, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D, 50018 Zaragoza, Spain.

The emergence of green chemistry and engineering principles to enforce sustainability aspects has ensured the prevalence of green solvents and green processes. Our study addresses this quest by exploring drug delivery applications of hydrophobic deep eutectic solvents (DESs) which are alternative green solvents. Initially, this work showcases the hydrophobic drug solubilization capabilities of a natural hydrophobic DES, menthol, and decanoic acid.

View Article and Find Full Text PDF

The absence of a clear consensus on the definition and significance of fascia and the indiscriminate use of the term throughout the clinical and scientific literature has led to skepticism regarding its importance in the human body. To address this challenge, we propose that: (1) fasciae, and the fascial interstitia within them, constitute an anatomical system, defined as a layered body-wide multiscale network of connective tissue that allows tensional loading and shearing mobility along its interfaces; (2) the fascial system comprises four anatomical organs: the superficial fascia, musculoskeletal (deep) fascia, visceral fascia, and neural fascia; (3) these organs are further composed of anatomical structures, some of which are eponymous; (4) all these fascial organs and their structural components contain variable combinations and arrangements of the four classically defined tissues: epithelial, connective, muscle, and neural; (5) the overarching functions of the fascial system arise from the contrasting biomechanical properties of the two basic types of layers distributed throughout the system: one predominantly collagenous and relatively stiff, the other rich in hyaluronic acid and viscous, allowing for the free flow of fluid; (6) the topographical organization of these layers in different locations is related to local variations in function (e.g.

View Article and Find Full Text PDF

Stable Air Plastron Prolongs Biofluid Repellency of Submerged Superhydrophobic Surfaces.

Langmuir

January 2025

School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Tietotie 3 Espoo 02150, Finland.

Superhydrophobic surfaces find applications in numerous biomedical scenarios, requiring the repellence of biofluids and biomolecules. Plastron, the trapped air between a superhydrophobic surface and a wetting liquid, plays a pivotal role in biofluid repellency. A key challenge, however, is the often short-lived plastron stability in biofluids and the lack of knowledge surrounding it.

View Article and Find Full Text PDF

Glycosylation can be used to improve the emulsifying properties of protein by covalently binding with sugar. In this study, we prepared coconut protein (CP) -polygalacturonic acid (PA) conjugates by dry-heat method, studied the effect of PA with different molecular weight on the structure and functionality of CP, and characterized the interfacical behavior of CP at the oil-water interface to establish the relationship between interfacial behavior and emulsion stability. The results showed that different molecular weights of PA (28.

View Article and Find Full Text PDF

Within the deep lung, pulmonary surfactant coats the air-liquid interface at the surface of the alveoli. This complex mixture of amphiphilic molecules and proteins modifies the surface tension and mechanical properties of this interface to assist with breathing. In this study, we examine the effects on pulmonary surfactant function by two industrially used compounds composing surfactants and polymers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!