Over the past few decades, there has been a significant interest in the study of essential genes, which are crucial for the survival of an organism under specific environmental conditions and thus have practical applications in the fields of synthetic biology and medicine. An increasing amount of experimental data on essential genes has been obtained with the continuous development of technological methods. Meanwhile, various computational prediction methods, related databases and web servers have emerged accordingly. To facilitate the study of essential genes, we have established a database of essential genes (DEG), which has become popular with continuous updates to facilitate essential gene feature analysis and prediction, drug and vaccine development, as well as artificial genome design and construction. In this article, we summarized the studies of essential genes, overviewed the relevant databases, and discussed their practical applications. Furthermore, we provided an overview of the main applications of DEG and conducted comprehensive analyses based on its latest version. However, it should be noted that the essential gene is a dynamic concept instead of a binary one, which presents both opportunities and challenges for their future development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989110PMC
http://dx.doi.org/10.1002/imt2.157DOI Listing

Publication Analysis

Top Keywords

essential genes
28
essential
9
database essential
8
study essential
8
practical applications
8
essential gene
8
genes
7
advances characterization
4
characterization essential
4
development
4

Similar Publications

Phytochemicals have been effectively used to enhance the growth and productivity of farm animals, while the potential roles of essential oils and their nano-emulsions are limited. This plan was proposed to investigate the impacts of orally administered moringa oil (MO) or its nano-emulsion (NMO) on the growth, physiological response, blood health, semen attributes, and sperm antioxidant-related genes in rams. A total of 15 growing Rahmani rams were enrolled in this study and allotted into three groups.

View Article and Find Full Text PDF

A sweeping view of avian mycoplasmas biology drawn from comparative genomic analyses.

BMC Genomics

January 2025

Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia.

Background: Avian mycoplasmas are small bacteria associated with several pathogenic conditions in many wild and poultry bird species. Extensive genomic data are available for many avian mycoplasmas, yet no comparative studies focusing on this group of mycoplasmas have been undertaken so far.

Results: Here, based on the comparison of forty avian mycoplasma genomes belonging to ten different species, we provide insightful information on the phylogeny, pan/core genome, energetic metabolism, and virulence of these avian pathogens.

View Article and Find Full Text PDF

Lactylation modulation identifies key biomarkers and therapeutic targets in KMT2A-rearranged AML.

Sci Rep

January 2025

National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.

Acute Myeloid Leukemia (AML) with KMT2A rearrangements (KMT2Ar), found on chromosome 11q23, is often called KMT2A-rearranged AML (KMT2Ar-AML). This variant is highly aggressive, characterized by rapid disease progression and poor outcomes. Growing knowledge of epigenetic changes, especially lactylation, has opened new avenues for investigation and management of this subtype.

View Article and Find Full Text PDF

rRNA-derived fragments (rRFs) are a class of emerging post-transcriptional regulators of gene expression likely binding to the transcripts of target genes. However, the lack of knowledge about such targets hinders our understanding of rRF functions or binding mechanisms. The paucity of resources supporting the identification of the targets of rRFs creates a bottleneck in the fast-developing field.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype with poor prognosis. RNA alternative splicing dysregulation plays a critical role in the initiation and progression of TNBC. This article systematically introduces the basic process of RNA splicing and then focuses on reviewing the aberrant alternative splicing events and their biological effects in TNBC: 1) Multiple splicing-related factors promote tumor cell proliferation and mediate chemotherapy resistance by regulating the alternative splicing of genes involved in cell survival and drug response; 2) dysregulation of splicing regulatory networks leads to altered splicing of multiple metastasis-related genes, promoting tumor invasion and metastasis; 3) aberrant alternative splicing events participate in tumor progression by affecting the expression of DNA damage repair genes; 4) dysregulation of alternative splicing is also involved in the regulation of tumor immune evasion and stem cell properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!