We propose a 28.5-GHz channel sounder that switches through all antennas of multiple dual-polarized 8 × 8 phased arrays at the transmitter and receiver and performs beamforming in postprocessing through digital weights to synthesize a sweepable beam. To our knowledge, we are the first to implement-what we refer to as- with phased arrays for millimeter-wave channel sounding, realized through highly stable Rubidium clocks and local oscillators coupled with precision over-the-air calibration techniques developed in house. By circumventing the time-consuming programming of analog weights that is associated with analog beamforming-what phased arrays are designed for-we can sweep a 3-D double-omnidirectional dual-polarized channel in just 1.3 ms, for real-time sounding. By in turn circumventing the coarse precision of analog weights, we can synthesize ideal beam patterns thanks to the effectively infinite precision of digital weights, enabling fine weight calibration for the nonidealities of the system hardware and fine weight tapering for sidelobe suppression. This translates to average estimation errors of 0.47° in 3-D double-directional angle, 0.48 dB in co-polarized path gain, and 0.18 ns in delay, as substantiated by field measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167733PMC
http://dx.doi.org/10.1109/tmtt.2021.3104278DOI Listing

Publication Analysis

Top Keywords

phased arrays
12
channel sounding
8
digital weights
8
weights synthesize
8
analog weights
8
fine weight
8
real-time mmwave
4
channel
4
mmwave channel
4
sounding switched
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!