Spin Crossover and Exchange Effects on Oxygen Evolution Reaction Catalyzed by Bimetallic Metal Organic Frameworks.

ACS Catal

Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.

Published: June 2024

Bimetallic metal-organic frameworks (BMOFs) have shown a superior oxygen evolution reaction (OER) performance, attributed to the synergistic effects of dual metal sites. However, the significant role of these dual-metal synergies in the OER is not yet fully understood. In this study, we employed density functional theory to systematically investigate the OER performance of NiAl- and NiFe-based BMOFs by examining all possible spin states of each intermediate across diverse external potentials and pH environments. We found that the spin state featuring a shallow hole trap state and Ni ions with a higher oxidation state serve as strong oxidizing agents, promoting the OER. An external potential-induced spin crossover was observed in each intermediate, resulting in significant changes in the overall reaction and activation energies due to altered energy levels. Combining the constant potential method and the electrochemical nudged elastic band method, we mapped the minimum free energy barriers of the OER under varied external potential and pH by considering the spin crossover effect for both NiAl and NiFe BMOFs. The results showed that NiFe exhibits better OER thermodynamics and kinetics, which is in good agreement with experimentally measured OER polarization curves and Tafel plots. Moreover, we found that the improved OER kinetics of NiFe not only is attributed to lower barriers but also is a result of improved electrical conductivity arising from the synergistic effects of Ni-Fe dual-metal sites. Specifically, replacing the second metal Al with Fe leads to two significant outcomes: a reduction in both the band gap and the effective hole mass compared to NiAl, and the initiation of super- and double-exchange interactions within the Ni-F-Fe chain, thereby enhancing electron transfer and hopping and leading to the improved OER kinetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165450PMC
http://dx.doi.org/10.1021/acscatal.4c01091DOI Listing

Publication Analysis

Top Keywords

spin crossover
12
oer
9
oxygen evolution
8
evolution reaction
8
oer performance
8
synergistic effects
8
improved oer
8
oer kinetics
8
spin
5
crossover exchange
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!