Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Summary: Subcluster analysis is a powerful means to improve clustering and characterization of single cell RNA-Seq data. However, there are no existing tools to systematically integrate results from multiple subclusters, which creates hurdles for accurate data quantification, visualization, and interpretation in downstream analysis. To address this issue, we developed Ragas, an R package that integrates multi-level subclustering objects for streamlined analysis and visualization. A new data structure was implemented to seamlessly connect and assemble miscellaneous single cell analyses from different levels of subclustering, along with several new or enhanced visualization functions. Moreover, a re-projection algorithm was developed to integrate nearest-neighbor graphs from multiple subclusters in order to maximize their separability on the combined cell embeddings, which significantly improved the presentation of rare and homogeneous subpopulations.
Availability And Implementation: The Ragas package and its documentation can be accessed through https://github.com/jig4003/Ragas and its source code is also available at https://zenodo.org/records/11244921.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209553 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btae366 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!