A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3108

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3108
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanofibers Embedded with Nanoparticles as Carriers for the Controlled Release of Anticancer Drug: Promoting the Apoptosis of Breast Cancer Cell Line and Growth Inhibition of Microbial Strains. | LitMetric

The polymeric nanofiber mats were produced from polylactic acid, methylcellulose, and polyethylene glycol with 5-fluorouracil (5Fu) drug and iron oxide (FeO) nanoparticles. Spectral and crystallographic studies clearly elucidated the ionic interactions, structure and nature of the mats. FeO nanoparticles <10 nm in size, along with methyl cellulose and polyethylene glycol, have significantly reduced the size of nanofiber mats. The mechanical properties for the mats was found to be challenging; however, surface wettability, swelling capacity, and drug encapsulation efficiency results were promising. A controlled drug release pattern was observed from in vitro drug release study, zero-order kinetics, and a Higuchi model. Nanofiber mats showed higher anticancer activity (78%) against MDA-MB 231 cancer cells, which reveals that a small amount of 5Fu drug (15.86%) with high levels of O, HO, and OH radicals generated from FeO have catalyzed the Fenton's reaction to eradicate the cancer cells, in a shorter span of 24 h, itself. In addition, the apoptosis assay by dual AO/PI staining method clearly exhibited the apoptotic cancer cells by fluorescence microscopy. Incorporation of FeO nanoparticles enhanced the anticancer activity of the mats, compared to the commercially available standard 5Fu drug. Nanofiber mats significantly controlled the growth of selected pathogenic microbial strains by the action of the 5Fu drug and Fe ions. The degradation of mats was investigated by an in vitro mass loss study for a period of 360 days. In a nutshell, promising nanofiber mats were produced as targeted drug delivery devices for chemotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c00183DOI Listing

Publication Analysis

Top Keywords

feo nanoparticles
8
nanofibers embedded
4
embedded nanoparticles
4
nanoparticles carriers
4
carriers controlled
4
controlled release
4
release anticancer
4
anticancer drug
4
drug promoting
4
promoting apoptosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!