Background: Acute otitis media (AOM) is a prevalent childhood acute illness, with 13.6 million pediatric office visits annually, often stemming from upper respiratory tract infections (URI) and affected by environmental factors like air pollution and cold seasons.

Methods: Herein, we made use of territory-wide hospitalization data to investigate the relationships between meteorological factors, air pollutants, influenza infection, and AOM for children observed from 1998 to 2019 in Hong Kong. Quasi-Poisson generalized additive model, combined with a distributed-lag non-linear model, was employed to examine the relationship between weekly AOM admissions in children and weekly influenza-like illness-positive (ILI +) rates, as well as air pollutants (i.e., oxidant gases, sulfur dioxide, and fine particulate matter), while accounting for meteorological variations.

Results: There were 21,224 hospital admissions due to AOM for children aged ≤ 15 years throughout a 22-year period. The cumulative adjusted relative risks (ARR) of AOM were 1.15 (95% CI, 1.04-1.28) and 1.07 (95% CI, 0.97-1.18) at the 95th percentile concentration of oxidant gases (65.9 ppm) and fine particulate matter (62.2 μg/m) respectively, with reference set to their medians of concentration. The ARRs exhibited a monotone increasing trend for all-type and type-specific ILI + rates. Setting the reference to zero, the cumulative ARRs of AOM rose to 1.42 (95% CI, 1.29-1.56) at the 95th percentile of ILI + Total rate, and to 1.07 (95% CI, 1.01-1.14), 1.19 (95% CI, 1.11-1.27), and 1.22 (95% CI, 1.13-1.32) for ILI + A/H1N1, A/H3N2, and B, respectively.

Conclusions: Our findings suggested that policy on air pollution control and influenza vaccination for children need to be implemented, which might have significant implications for preventing AOM in children.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170825PMC
http://dx.doi.org/10.1186/s12889-024-18962-4DOI Listing

Publication Analysis

Top Keywords

air pollutants
12
aom children
12
acute otitis
8
otitis media
8
hospitalization data
8
factors air
8
air pollution
8
oxidant gases
8
fine particulate
8
particulate matter
8

Similar Publications

Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

The purpose of the current study was to investigate the potential ameliorating murine reproductive effects of herbal tea extracts against bisphenol A-induced (BPA) cytotoxicity. A comparative study was applied among red, green and blue teas in mice groups. Samples were coded as RTE, GTE and BTE groups, respectively.

View Article and Find Full Text PDF

Bioelectronic and photogenerated electron synergistic catalyzed removal of chlorhexidine: Degradation and mechanism.

J Hazard Mater

January 2025

College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087,  China; National University of Singapore, Department of Civil and Environmental Engineering, 1 Engineering Drive 2, 117576, Singapore. Electronic address:

The extensive use of the antimicrobial compound chlorhexidine (CHD) has emerged as a significant threat to both the ecological environment and human health. To address this concern, a photo-electrochemical cell-microbial fuel cell (PMFC) system was studied for CHD removal by incorporating, for the first time, the photocatalysts black phosphorus/carbon nitride (BPCN) and CuO into the bioanode and air cathode of an MFC, respectively. By combining electrochemical, macro-genomic, and intermediate product analyses, the underlying mechanisms of bioelectronic and photoelectronic synergies were elucidated.

View Article and Find Full Text PDF

Chemoprotective Mechanism of Sodium Thiosulfate Against Cisplatin-Induced Nephrotoxicity Is via Renal Hydrogen Sulfide, Arginine/cAMP and NO/cGMP Signaling Pathways.

Int J Mol Sci

January 2025

Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana.

Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (HS) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN.

View Article and Find Full Text PDF

Climate change is significantly altering the dynamics of airborne allergens, affecting their seasonality, allergenicity, and geographic distribution, which correlates with increasing rates of allergic diseases. This study investigates aeroallergen sensitization among populations from Tenerife, Spain, and Lima, Peru-two regions with similar climates but distinct socio-economic conditions. Our findings reveal that Spanish individuals, particularly those with asthma, demonstrate higher sensitization levels to a broader range of allergens, especially mites, with 85% of participants reacting to at least one mite allergen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!