Surface coal development activities include mining and ecological restoration, which significantly impact regional carbon sinks. Quantifying the dynamic impacts on carbon sequestration in vegetation (VCS) during coal development activities has been challenging. Here, we provided a novel approach to assess the dynamics of VCS affected by large-scale surface coal mining and subsequent restoration. This approach effectively overcomes the limitations imposed by the lack of finer scale and long-time series data through scale transformation. We found that mining activities directly decreased VCS by 384.63 Gg CO, while restoration activities directly increased 192.51 Gg CO between 2001 and 2022. As of 2022, the deficit in VCS at the mining areas still had 1966.7 Gg CO. The study highlights that complete restoration requires compensating not only for the loss in the year of destruction but also for the ongoing accumulation of losses throughout the mining lifecycle. The findings deepen insights into the intricate relationship between coal resource development and ecological environmental protection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11169282 | PMC |
http://dx.doi.org/10.1038/s41598-024-64381-1 | DOI Listing |
Sci Rep
January 2025
College of Engineering, Ocean University of China, Qingdao, 266404, China.
Although deterministic analysis can provide initial insights into slope stability, there is no way to reflect the true distribution of soil properties within a slope. To further investigate the effects of the spatial variability of soil properties on the stability and failure mechanism of slope under different foundation types, this study develops a framework combining simple limit equilibrium method (LEM), Monte Carlo Simulation (MCS), and random field to incorporate these factors into slope probabilistic stability analysis. The slope models of two typical foundations (e.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada.
Coal tar-related products as a source of polycyclic aromatic compounds (PACs) are particularly concerning due to high PAC concentrations and inadequate source management. Benzo[b]carbazole, a benzocarbazole isomer exclusively found in coal tar-derived products, acts as an ideal marker to distinguish coal tar sources from others, enabling more robust quantification of coal tar contributions to PACs. To evaluate the historical and recent contributions of coal tar-related sources to the levels of PACs in Lake Ontario and associated ecological risk, we analyzed 31 PACs and 3 BCBz isomers in surface sediments and a sediment core.
View Article and Find Full Text PDFChemphyschem
January 2025
Chinese Academy of Sciences, Institute of Coal Chemistry, 27 South Taoyuan Road, Taiyuan, Shanxi, P.R.China, 030001, Taiyuan, CHINA.
Electric double layer capacitors (EDLC) require large specific surface area to provide high power density. The generation of pores increases the electrochemical capacitance with more graphitic edge planes exposed to the electrolyte. Conventional theory believes this increasing in capacitance is owed to the increased specific surface area, but our work uncovers another mechanism.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. Electronic address:
The development of advanced bifunctional oxygen electrocatalysts for the oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) is crucial for the practical application of zinc-air batteries (ZABs). Herein, porous carbon nanosheets integrated with abundant graphene-wrapped CoO and CoNx (CoO/CoNx-C) were successfully fabricated through a simple one-step pyrolysis. With convenient porous channel and large accessible surface, abundant CoO/CoNx species and graphene wrapping structure, CoO/CoNx-C exhibited a half-wave potential of 0.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, 710021 Xi'an, China.
For the effective removal of phenol from the environment, photocatalytic synergistic adsorption is currently one of the key methods. By leveraging the polysaccharide backbone structure of sodium alginate (SA),Zinc hydroxystannate (ZHS) was introduced into the gel structure using a co-precipitation technique. Additionally, gangue waste was repurposed through a polymerization reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!