A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Constraint optimization of an integrated production model utilizing history matching and production forecast uncertainty through the ensemble Kalman filter. | LitMetric

The calibration of reservoir models using production data can enhance the reliability of predictions. However, history matching often leads to only a few matched models, and the original geological interpretation is not always preserved. Therefore, there is a need for stochastic methodologies for history matching. The Ensemble Kalman Filter (EnKF) is a well-known Monte Carlo method that updates reservoir models in real time. When new production data becomes available, the ensemble of models is updated accordingly. The initial ensemble is created using the prior model, and the posterior probability function is sampled through a series of updates. In this study, EnKF was employed to evaluate the uncertainty of production forecasts for a specific development plan and to match historical data to a real field reservoir model. This study represents the first attempt to combine EnKF with an integrated model that includes a genuine oil reservoir, actual production wells, a surface choke, a surface pipeline, a separator, and a PID pressure controller. The research optimized a real integrated production system, considering the constraint that there should be no slug flow at the inlet of the separator. The objective function was to maximize the net present value (NPV). Geological data was used to model uncertainty using Sequential Gaussian Simulation. Porosity scenarios were generated, and conditioning the porosity to well data yielded improved results. Ensembles were employed to balance accuracy and efficiency, demonstrating a reduction in porosity uncertainty due to production data. This study revealed that utilizing a PID pressure controller for the production separator can enhance oil production by 59% over 20 years, resulting in the generation of 2.97 million barrels of surplus oil in the field and significant economic gains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11169270PMC
http://dx.doi.org/10.1038/s41598-024-64213-2DOI Listing

Publication Analysis

Top Keywords

history matching
12
production data
12
production
10
integrated production
8
ensemble kalman
8
kalman filter
8
reservoir models
8
uncertainty production
8
pid pressure
8
pressure controller
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!